[1]
B. R. Bakshi, Multiscale Analysis And Modeling Using Wavelets, Journal of Chemometrics 13 (1999) 415–434.
DOI: 10.1002/(sici)1099-128x(199905/08)13:3/4<415::aid-cem544>3.0.co;2-8
Google Scholar
[2]
G. Van de Wouwer, P. Scheunders, D. Van Dyck, Statistical texture characterization from discrete wavelet representations, IEEE Transactions on Image Processing 8( 4) (1999) 592 – 598.
DOI: 10.1109/83.753747
Google Scholar
[3]
R.F. Luo, M. Misra, D.M. Himmelblau, Sensor fault detection via multiscale analysis and dynamic PCA, Industrial & Engineering Chemistry Research 38 (1999) 1489–1495.
DOI: 10.1021/ie980557b
Google Scholar
[4]
C.K. Yoo, S.W. Choi, I.B. Lee, Dynamic monitoring method for multiscale fault detection and diagnosis in MSPC, Industrial & Engineering Chemistry Research 41 (2002) 4303–4317.
DOI: 10.1021/ie0105730
Google Scholar
[5]
M. Sekine, T. Tamura, M. Akay, T. Fujimoto, T. Togawa, Y. Fukui, Discrimination of walking patterns using wavelet-based fractal analysis, IEEE Transactions on Neural Systems and Rehabilitation Engineering 10(3) (2002) 188–197.
DOI: 10.1109/tnsre.2002.802879
Google Scholar
[6]
M. S. Keshner, 1/f noise, Proceedings of the IEEE 70 (1982) 212–218.
Google Scholar
[7]
X. Lou, K. Loparo, Gearbox fault diagnosis based on wavelet transform and fuzzy inference, Mechanical Systems and Signal Processing 18 (2004) 1077–1095.
DOI: 10.1016/s0888-3270(03)00077-3
Google Scholar
[8]
J. Lin, M. J. Zuo, Gearbox Fault Diagnosis using adaptive wavelet Filter, Mechanical Systems and Signal Processing 17(6) (2003) 1259–1269.
DOI: 10.1006/mssp.2002.1507
Google Scholar
[9]
X.M. Tao, L.H. Sun, B.X. Du, Y. Xu, Bearings fault diagnosis based on wavelet variance spectrum entropy, Journal of Vibration and Shock 28 (3) (2009) 18–22.
Google Scholar
[10]
M. Akay, M. Sekine, T. Tamura, Y. Higashi, T. Fujimoto, Fractal dynamics of body motion in post-stroke hemiplegic patients during walking, Journal of Neural Engineering 1 (2004) 111–116.
DOI: 10.1088/1741-2560/1/2/006
Google Scholar
[11]
X. Fan, M.J. Zuo, Gearbox fault detection using Hilbert and wavelet packet transform, Mechanical Systems and Signal Processing 20(2006) 966–982.
DOI: 10.1016/j.ymssp.2005.08.032
Google Scholar
[12]
N.E. Huang, Z. Shen, S.R. Long et al, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc., Lond. A 454 (1998) 903–995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[13]
I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1998) 909–996.
DOI: 10.1002/cpa.3160410705
Google Scholar