The Synthesis of Polystyrene-B-Poly(4-Vinylpyridine) and its Application

Article Preview

Abstract:

a system of polystyrene and polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) were synthesized by using living free radical in the presence of 4-hydroxyl-2, 2, 6, 6-tetramethylpiperridine-oxyl-1(HTEMPO•) and (BPO). The polystyrene and diblock copolymers were characterized by gel permeation chromatography (GPC) and atomic force microscope (AFM). The results suggested that the polymerization of styrene in the presence of 4-hydroxyl-2, 2, 6, 6-tetramethylpiperridine-oxyl-1(HTEMPO•) and benzoyl peroxide (BPO) can be prepared with molecular weight distribution in the range of 1.15 to 1.25. The polystyrene with living groups can continuously initiate the living free radical polymerization of 4-Vinylpyridine to form the polystyrene-block-poly (4-vinylpyridine) with molecular weight distribution in the range of 1.08 to 1.35. The AFM of diblock indicated the diblock copolymer(PS-b-P4VP) is a good compatibilizer for PS and P4VP.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-161

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Aubrey, G.. J. Richard, M. Graeme. Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Recommendations)". Pure Appl. Chem. 82 (2010) 483–491.

DOI: 10.1351/pac-rep-08-04-03

Google Scholar

[2] S.Yamago, E. Kayahara, M. Kotani, B. Ray, Y. Kwak, A. Goto and T. Fukuda. "Highly controlled living radical polymerization through dual activation of organobismuthines". Angew. Chem. Int. Ed. 46 (2007) 1304–1306.

DOI: 10.1002/anie.200604473

Google Scholar

[3] S. Yamago, B. Ray, K. Iida, J.-i. Yoshida, T. Tada, K. Yoshizawa, Y. Kwak, A. Goto and T. Fukuda. "Highly Versatile Organostibine Mediators for Living Radical Polymerization". J. Am. Chem. Soc. 126 (2004) 13908–13909.

DOI: 10.1021/ja044787v

Google Scholar

[4] N. Hadjichristidis, H. Iatrou, P. Pitsikalis, J. Mays. Macromolecular architectures by living and controlled/living polymerizations. Prog. Polym. Sci. 31 (2006) 1068-1132.

DOI: 10.1016/j.progpolymsci.2006.07.002

Google Scholar

[5] M. Sawamoto. Modern Cationic Vinyl Polymerization. Progress in Polymer Science 16 (1991). 111–172.

DOI: 10.1016/0079-6700(91)90008-9

Google Scholar

[6] Z. Chen, J. Cai. Nitroxide-mediated radical polymerization of 4-vinylpyridine and its application on modification of silicon substrate.Joural of Applied Polymer Science, 86 (2002) 2687~2692.

DOI: 10.1002/app.11236

Google Scholar

[7] A. Goto, Y. Kwak, T. Fukuda, S.Yamago, K. Iida, M. Nakajima and J. Yoshida. Mechanism-Based Invention of High-Speed Living Radical Polymerization Using Organotellurium Compounds and Azo-Initiators, J. Am. Chem. Soc. 125 (2003) 8720–8721.

DOI: 10.1021/ja035464m

Google Scholar

[8] K. Matyjaszewski and J. Xia. Atom Transfer Radical Polymerization. Chem. Rev. 101 (2001) 2921–2990.

DOI: 10.1021/cr940534g

Google Scholar

[9] G. D. Gunton, M. M. San, P. S. Sahini. Phase Transitions and Critical Phenomena.Domb C, Lebowitz J L, Eds, Academic Press, London,(1983) 18-36.

Google Scholar