Self-Assembled Graphene for Determination of Catechol in Wastewater at Modified Glassy Carbon Electrode

Article Preview

Abstract:

Graphene-modified glassy carbon electrode was made by dropping. In phosphate-citric acid buffered saline, the modified electrode was shown to possess an excellent selective electrocatalytical effect on the redox of catechol, and further used to determine catechol in the presence of resorcin and hydroquinone by cyclic voltammetry. The oxidation peak currents Ipa showed a linear relationship with the concentrations (c) of catechol in the range of 2.97×10-7 mol•L-1~9.31×10-6 mol•L-1 and 9.31×10-6 mol•L-1~1.03×10-4 mol•L-1 with a correlation coefficient as follows: Ipa1(A)= -4.10×10-6-2.31c, R=0.Superscript text9971; Ipa2 (A) =-1.50×10-5-0.60c, R=0.9953, respectively, and the detection limit is 2.50×10-8 mol•L-1. The modified electrode is high sensitivity, selectivity, stability, and has been successfulSuperscript textly applied to analyzing catechol in wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

255-259

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Ghanem, Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electroden, Electrochemistry Communications. 9 (2007) 2501-2506.

DOI: 10.1016/j.elecom.2007.07.023

Google Scholar

[2] L. Wang, P.F. Huang, J.Y. Bai, H.J. Wang, LY Zhang, Y.Q. Zhao, Covalent modification of a glassy carbon electrode with penicillamine for simultaneous determination of hydroquinone and catechol , Microchimica Acta.158 (2007) 151-157.

DOI: 10.1007/s00604-006-0703-x

Google Scholar

[3] L. Su, L.Q. Mao, Gold nanoparticle/alkanedithiol conductive films selfassembled onto gold electrode: electrochemistry and electroanalytical application for voltammetric determination of trace amount of catechol, Talanta.70 (2006) 68-74.

DOI: 10.1016/j.talanta.2006.01.015

Google Scholar

[4] H.G. Lin, T. Gan, K.B. Wu, Sensitive and rapid determination of catechol in tea samples using mesoporous Al-doped silica modified electrode, Food Chemistry. 113 (2009) 701-704.

DOI: 10.1016/j.foodchem.2008.07.073

Google Scholar

[5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorie -va, A.A. Firsov, Electric field effect in atomically thin carbon films, Science. 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[6] Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature. 438 (2005) 201-204.

DOI: 10.1038/nature04235

Google Scholar

[7] X.H. Kang, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y.H. Lin, A graphene-based electrochemical sensor for sensitive detection of paracetamol,Talanta. 51 (2010) 754-759.

DOI: 10.1016/j.talanta.2010.01.009

Google Scholar

[8] F.H. Li, J. Chai, H.F. Yang, D.X. Han, L. Niu, Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine, Talanta. 81 (2010) 1063-1068.

DOI: 10.1016/j.talanta.2010.01.061

Google Scholar

[9] W.S. Hummers, JR, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339-1341.

DOI: 10.1021/ja01539a017

Google Scholar

[10] Y.C. Si, E.T. Samulski, Synthesis of Water Soluble Graphene, Nano. Lett. 8 (2008) 1679-1682.

DOI: 10.1021/nl080604h

Google Scholar

[11] A.B. Bourlinos, D. Goumis, D. Petridis, T. Szabo, A .Szeri, I .Dekany, Graphite oxide: Chemical reduction to graphite and surface modifcation with primary aliphatic amines and amino acids, Langmuir.19 (2003) 6050-6055.

DOI: 10.1021/la026525h

Google Scholar