Growth Mechanism, Structural and Optical Properties of ZnO Nanoparticles

Article Preview

Abstract:

This paper using an electric field-assisted direct precipitation method synthesize the ZnO nanosheets with zinc nitrate hexahydrate and sodium carbonate. The synthesis processes with and without an electric field were compared. The morphology of the ZnO nanosheets was investigated by scanning electron microscopy (SEM) measurements. The SEM results show that the application of an electric field caused the morphology transformation from flake-like to flower-like. It was found that an electric field had an effect on the crystal structure,the particle size and morphology. The photoluminescence spectrum of the synthesized ZnO nanosheets shows a strong ultraviolet emission at 249 nm. In addition,the formation mechanism of the ZnO nanosheets is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

260-263

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen Y, Bagnall D M, Koh H J, et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization, J. Appl. Phys. 84(1998) 3912-3918.

DOI: 10.1063/1.368595

Google Scholar

[2] Fan Z, Lu J G. Zinc oxide nanostructures: Synthesis and properties, J. Nanosci. Nanotechnol. 5(2005)1561-1573.

Google Scholar

[3] Rao C N R, Gundiah G,Deepak F L, et al. Carbon-assisted synthesis of inorganic nanowires, J. Mater. Chem. 14(2004)440-450.

DOI: 10.1039/b310387k

Google Scholar

[4] Huang M H,Mao S,Feick H,et al. Room-temperature ultraviolet nanowire nanolasers, Science. 292(2001)1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[5] Liu C Y,Zhang B P,Lu Z W,et al. Fabrication and characterization of ZnO film based UV photodetector, J. Mater. Sci. : Mater. Electron. 20(2009)197- 201.

DOI: 10.1007/s10854-008-9698-x

Google Scholar

[6] Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging, Nature. 451(2008)809-813.

DOI: 10.1038/nature06601

Google Scholar

[7] Song J H, Wang X D, Liu J, et al. Piezoelectric Potential Output from ZnO Nanowire Functionalized with p-Type Oligomer, Nano Lett. 8(2008)203-207.

DOI: 10.1021/nl072440v

Google Scholar

[8] Zhao Su Ling, Kan Peng Zhi, Xu Zheng, et al. Electroluminescence of ZnO nanorods/MEH-PPV heterostructure devices, Organic Electronics . 11(2010)789-793.

DOI: 10.1016/j.orgel.2010.01.020

Google Scholar

[9] Michael Breedon, Mohammad Bagher Rahmani, Sayyed-Hossein Keshmiri, et al. Aqueous synthesis of interconnected ZnO nanowires using spray pyrolysis deposited seed layers, Materials Letters . 64(2010)291-294.

DOI: 10.1016/j.matlet.2009.10.065

Google Scholar

[10] S. Sepulveda-Guzman,B. Reeja-Jayan,E. De la Rosa, et al. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography, Applied Surface Science. 256(2010)3386-3389.

DOI: 10.1016/j.apsusc.2009.12.039

Google Scholar

[11] H. -G. Chen, Sheng-Rui Jiana, Zheng-Wei Li, et al. Epitaxial growth of self-arranged periodic ZnO nanostructures on sapphire substrates grown by MOCVD, J. Alloys Compd. 10(2010)1016.

DOI: 10.1016/j.jallcom.2010.02.195

Google Scholar

[12] Y.J. Chen, Y.Y. Shih, C.H. Ho, et al. Effect of temperature on lateral growth of ZnO grains grown by MOCVD, Ceramics International. 36(2010)69–73.

DOI: 10.1016/j.ceramint.2009.06.018

Google Scholar

[13] Y.W. Heo, D.P. Norton, L.C. Tien, et al. ZnO nanowire growth and devices, Mater. Sci. Eng. 47(2004)1-47.

Google Scholar

[14] M. Huang, Y. Wu, H. Feick, et al. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, Advanced Materials. 13(2001)113-116.

DOI: 10.1002/1521-4095(200101)13:2<113::aid-adma113>3.0.co;2-h

Google Scholar

[15] A. Kolodziejczak-Radzimska, T. Jesionowski, A. Krysztafkiewicz. Obtaining zinc oxide from aqueous solutions of KOH and Zn(CH3COO)2, Physicochemical Problems of Mineral Processing. 44(2010)93-102.

Google Scholar

[16] Zhang Can-yun. High-quality oriented ZnO films grown by sol–gel process assisted with ZnO seed layer, Journal of Physics and Chemistry of Solids. 71(2010)364-369.

DOI: 10.1016/j.jpcs.2010.01.001

Google Scholar

[17] Zhaoyi Zhou, Yaping Zhao, Zaisheng Cai. Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method, Applied Surface Science. 256(2010)4724-4728.

DOI: 10.1016/j.apsusc.2010.02.081

Google Scholar

[18] A. Aimable, M.T. Buscaglia, V. Buscaglia, et al. Polymer-assisted precipitation of ZnO nanoparticles with narrow particle size distribution, Journal of the European Ceramic Society. 30(2010)591–598.

DOI: 10.1016/j.jeurceramsoc.2009.06.010

Google Scholar

[19] Li W J, Shi E W, Zhong W Z, et al. Growth mechanism and growth habits of oxide crystal, Journal of Crystal Growth. 203(1999)186.

DOI: 10.1016/s0022-0248(99)00076-7

Google Scholar

[20] Zhang J,Sun L D,Yin J L,et al. Control of ZnO morphology via a simple solution route, Chem. Mater. 14(2002) 4172- 4177.

DOI: 10.1021/cm020077h

Google Scholar

[21] Genban Sun, Minhua Cao, Yonghui Wang, Changwen Hu, Yichun Liu, Ling Ren , Zhifa Pu. Anionic surfactant-assisted hydrothermal synthesis of high-aspect-ratio ZnO nanowires and their photoluminescence property, Materials Letters. 60 (2006).

DOI: 10.1016/j.matlet.2006.01.088

Google Scholar

[22] G.H. Schoenmakers, D. Vanmaekelbergh, J.J. Kelly, Study of Charge Carrier Dynamics at Illuminated ZnO Photoanodes, J. Phys. Chem. 100(1996) 3215.

DOI: 10.1021/jp952392f

Google Scholar