[1]
J. Wolff, The Law of Bone Remodelling. (translated into English by P. Maquet and R. Furlong). Springer Verlag, Berlin., (1986).
Google Scholar
[2]
J. M. Bourgery, Trait complet de lanatomie de lhomme. I. Osteologic, 1832.
Google Scholar
[3]
W. Roux, Der Zuchtende Kampf der Teile, oder die Teilauslese im Organismus (Theorie der Funktionellen Anpassung), W. Engelmann, Ed. Leipzig, 1881.
Google Scholar
[4]
W. Roux, Die Entwicklungsmechanik; ein neuer Zweig der biologischen Wissenschaft., Leipzig, Ed. Wilhelm Engelmann, (1905).
DOI: 10.1007/978-3-642-93367-7_12
Google Scholar
[5]
R. Huiskes, H. Weinans, H. J. Grootenboer, M. Dalstra, B. Fudala, and T. J. Slooff, Adaptive bone-remodeling theory applied to prosthetic design analysis, J Biomech, vol. 20, p.1135–1150, (1987).
DOI: 10.1016/0021-9290(87)90030-3
Google Scholar
[6]
H. M. Frost, The Utah paradigm of skeletal physiology. ISMNI: International Society of Musculoskeletal and Neuronal Interactions, 2004, vol. I and II.
Google Scholar
[7]
H. M. Frost, Presence of microscpoic cracks in vivo in bone., Henry Ford Hosp. Med. Bull., Tech. Rep. 8: 2535, (1960).
Google Scholar
[8]
H. M. Frost, Mathematical Elements of Lamellar Bone Remodelling, C. C. Thomas, Ed. Springfield, (1964).
Google Scholar
[9]
D. M. Raab, E. L. Smith, T. D. Crenshaw, and D. P. Thomas, Bone mechanical properties after exercise training in young and old rats, J. Appl. Physiol., vol. 68, p.130–134, Jan (1990).
DOI: 10.1152/jappl.1990.68.1.130
Google Scholar
[10]
D. C. Welten, H. C. Kemper, G. B. Post, W. Van Mechelen, J. Twisk, P. Lips, and G. J. Teule, Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake, J. Bone Miner. Res., vol. 9, p.1089–1096, Jul (1994).
DOI: 10.1002/jbmr.5650090717
Google Scholar
[11]
D. Kerr, A. Morton, I. Dick, and R. Prince, Exercise effects on bone mass in postmenopausal women are site-specific, J. Bone Miner. Res., vol. 11, p.218–225, Feb (1996).
DOI: 10.1002/jbmr.5650110211
Google Scholar
[12]
L. Lanyon and T. Skerry, Postmenopausal osteoporosis as a failure of bone's adaptation to functional loading: a hypothesis, J. Bone Miner. Res., vol. 16, p.1937–1947, Nov (2001).
DOI: 10.1359/jbmr.2001.16.11.1937
Google Scholar
[13]
J. C. Koch, Laws of bone architecture, Am. J. Anat., vol. 21, p.177–298, (1917).
Google Scholar
[14]
F. Pauwels, Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer, Berlin., (1965).
DOI: 10.1007/978-3-642-86841-2
Google Scholar
[15]
B. Kummer, Biomechanics of bone: mechanical properties, functional structure and functional adaptation. Prentice Hall. Englewood Cliffs, NJ., 1972, ch. Biomechanics: its foundations and objectives, p.237– 272.
Google Scholar
[16]
S. C. Cowin and D. H. Hegedus, Bone remodeling I: theory of adaptive elasticity., J. of Elasticity, vol. 6, p.313–326, (1976).
DOI: 10.1007/bf00041724
Google Scholar
[17]
W. C. Hayes and B. Snyder, Toward a quantitative formulation of Wolff's law in trabecular bone, Mechanical Properties of Bone, vol. 45, p.43–69, (1981).
Google Scholar
[18]
A. G. Robling, A. B. Castillo, and C. H. Turner, Biomechanical and molecular regulation of bone remodeling, Annu Rev Biomed Eng, vol. 8, p.455–498, (2006).
DOI: 10.1146/annurev.bioeng.8.061505.095721
Google Scholar
[19]
T. Wren, G. Beaupre, and D. Carter, A model for loading dependent growth, development, and adaptation of tendons and ligaments, J Biomech, vol. 31, p.107–114, Feb (1998).
DOI: 10.1016/s0021-9290(97)00120-6
Google Scholar
[20]
X. L. Lu and V. C. Mow, Biomechanics of articular cartilage and determination of material properties, Med Sci Sports Exerc, vol. 40, p.193–199, Feb (2008).
DOI: 10.1249/mss.0b013e31815cb1fc
Google Scholar
[21]
D. R. Carter, Mechanical loading history and skeletal biology, J Biomech, vol. 20, p.1095–1109, (1987).
Google Scholar
[22]
R. Huiskes, R. Ruimerman, G. H. van Lenthe, and J. Janssen, Effects of mechanical forces on maintenance and adaptation of form in trabecular bone, Nature, vol. 405, p.704–706, Jun (2000).
DOI: 10.1038/35015116
Google Scholar
[23]
J. H. Heegaard, G. S. Beaupre, and D. R. Carter, Mechanically modulated cartilage growth may regulate joint surface morphogenesis, J. Orthop. Res., vol. 17, p.509–517, Jul (1999).
DOI: 10.1002/jor.1100170408
Google Scholar
[24]
W. M. Lai, J. S. Hou, and V. C. Mow, A triphasic theory for the swelling and deformation behaviors of articular cartilage, J Biomech Eng, vol. 113, p.245–258, Aug (1991).
DOI: 10.1115/1.2894880
Google Scholar
[25]
J. E. Letechipia, A. Alessi, G. Rodriguez, and J. Asbun, Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling?, Med. Hypotheses, vol. 75, p.196–198, Aug (2010).
DOI: 10.1016/j.mehy.2010.02.021
Google Scholar
[26]
T. Adachi, Y. Kameo, and M. Hojo, Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress, Philos Transact A Math Phys Eng Sci, vol. 368, p.2669–2682, Jun (2010).
DOI: 10.1098/rsta.2010.0073
Google Scholar
[27]
H. M. Frost, Skeletal structural adaptations to mechanical usage (SATMU): 4. mechanical influences on intact fibrous tissues, Anat. Rec., vol. 226, p.433–439, Apr (1990).
DOI: 10.1002/ar.1092260405
Google Scholar
[28]
D. Kaneko, Y. Sasazaki, T. Kikuchi, T. Ono, K. Nemoto, H. Matsumoto, and Y. Toyama, Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro, Connect. Tissue Res., vol. 50, p.263–269, (2009).
DOI: 10.1080/03008200902846270
Google Scholar
[29]
C. T. Chen, R. P. McCabe, A. J. Grodzinsky, and R. Vanderby, Transient and cyclic responses of strain-generated potential in rabbit patellar tendon are frequency and ph dependent, J Biomech Eng, vol. 122, p.465–470, Oct (2000).
DOI: 10.1115/1.1289639
Google Scholar
[30]
D. E. Ingber, Tensegrity and mechanotransduction, J Bodyw Mov Ther, vol. 12, p.198–200, Jul (2008).
Google Scholar
[31]
V. Mow, S. Kuei, W. Lai, and C. Armstrong, Biphasic creep and stress relaxation of articular cartilage in compression? theory and experiments, J Biomech Eng, vol. 102, p.73–84, Feb (1980).
DOI: 10.1115/1.3138202
Google Scholar
[32]
G. A. Ateshian and H. Wang, A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers, J Biomech, vol. 28, p.1341–1355, Nov (1995).
DOI: 10.1016/0021-9290(95)00008-6
Google Scholar
[33]
H. M. Frost, Skeletal structural adaptations to mechanical usage (SATMU): 3. the hyaline cartilage modeling problem, Anat. Rec., vol. 226, p.423–432, Apr (1990).
DOI: 10.1002/ar.1092260404
Google Scholar
[34]
F. Eckstein, M. Hudelmaier, and R. Putz, The effects of exercise on human articular carti-lage, J. Anat., vol. 208, p.491–512, Apr (2006).
DOI: 10.1111/j.1469-7580.2006.00546.x
Google Scholar
[35]
J. Arokoski, J. Jurvelin, U. Vaatainen, and H. Helminen, Normal and pathological adaptations of articular cartilage to joint loading, Scand J Med Sci Sports, vol. 10, p.186–198, Aug (2000).
DOI: 10.1034/j.1600-0838.2000.010004186.x
Google Scholar
[36]
M. Conconi and V. Parenti Castelli, A kinematic model of the tibio-talar joint using a minimum energy principle, in RoManSy 2008: 18th CISMIFToMM Symposium on Robot Design, Dynamics, and Control, Udine, Italy., (2010).
DOI: 10.1007/978-3-7091-0277-0_41
Google Scholar
[37]
P. G. Bullough, The geometry of diarthrodial joints, its physiologic maintenance, and the possible significance of age-related changes in geometry-to-load distribution and the development of osteoarthritis, Clin. Orthop. Relat. Res., p.61–66, May (1981).
DOI: 10.1097/00003086-198105000-00008
Google Scholar
[38]
W. H. Simon, S. Friedensberg, and S. Richardson, Joint congruence: a correlation of joint congruence and thickness of articular cartilage in dogs, Journal of Bone and Joint Surgery, vol. 55, p.1614–1620, (1973).
DOI: 10.2106/00004623-197355080-00004
Google Scholar
[39]
G. Ateshian, M. Rosenwasser, and V. Mow, Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints, Journal of Biomechanics, vol. 25, no. 6, p.591 – 607, (1992).
DOI: 10.1016/0021-9290(92)90102-7
Google Scholar
[40]
J. Hohe, G. Ateshian, M. Reiser, K. -H. Englmeier, and F. Eckstein, Surface size, curvature analysis, and assessment of knee joint incongruity with mri in vivo, Magnetic Resonance in Medicine, vol. 47, no. 3, p.554 – 61, (2002).
DOI: 10.1002/mrm.10097
Google Scholar
[41]
K. Connolly, J. Ronsky, L. Westover, J. Kupper, and R. Frayne, Analysis techniques for congruence of the patellofemoral joint, Journal of Biomechanical Engineering, vol. 131, no. 12, pp.124-503–1 – 7, (2009).
DOI: 10.1115/1.3212111
Google Scholar
[42]
D. Wilson and J. O'Connor, A three-dimensional geometric model of the knee for the study of joint forces in gate, Gait and Posture, vol. 5, p.108–115, (1997).
DOI: 10.1016/s0966-6362(96)01080-6
Google Scholar
[43]
D. Wilson, J. Feikes, A. Zavatsky, and J. O'Connor, The components of passive knee move-ment are coupled to flexion angle, Journal of Biomechanics, vol. 33, no. 4, p.465 – 473, (2000).
DOI: 10.1016/s0021-9290(99)00206-7
Google Scholar
[44]
A. Leardini, J. O'Connor, F. Catani, and S. Giannini, Kinematics of the human ankle complex in passive flexion; a single degree of freedom system, Journal of Biomechanics, vol. 32, no. 2, p.111 – 18, (1999).
DOI: 10.1016/s0021-9290(98)00157-2
Google Scholar
[45]
E. S. Grood and W. J. Suntay, A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee, Journal of Biomechanical Engineering, vol. 135, p.136–144, May (1983).
DOI: 10.1115/1.3138397
Google Scholar
[46]
R. Franci and V. Parenti-Castelli, A 5-5 one-degree-of-freedom fully parallel mechanism for the modeling of passive motion at the human ankle joint, in DETC2007, vol. 8 PART A, Las Vegas, NV, United states, 2007, p.637 – 644.
DOI: 10.1115/detc2007-34841
Google Scholar
[47]
D. E. Shepherd and B. B. Seedhom, Thickness of human articular cartilage in joints of the lower limb, Ann. Rheum. Dis., vol. 58, p.27–34, Jan (1999).
DOI: 10.1136/ard.58.1.27
Google Scholar