Joint Kinematics from Functional Adaptation: An Application to the Human Ankle

Article Preview

Abstract:

The aim of this paper is to exploit the concept of functional adaptation to model the motion of human joints and to present an application to the human tibio-talar articulation. With respect to previous works, a new algorithm is presented here that improves the model outcomes and numerical stability, also reducing the computational cost. Moreover, a refined measure for joint congruence is proposed, which requires only the knowledge of the articular surface shapes. This measure is hypothesized to be proportional to the joints ability to withstand an applied load. Biological tissues tend to achieve the necessary mechanical resistance with the smallest amount of material (functional adaptation). Conversely, adapted tissues employ their material optimally, maximizing their mechanical resistance. It follows that, as a result of the functional adaptation process, an adapted joint will move along the envelope of maximum resistance and thus maximum congruence configurations. This envelope defines a spatial trajectory along which the functional adaptation requirements are satisfied and it may thus be called functionally adapted trajectory. The functionally adapted trajectory obtained by simulations is compared with in vitro measured one. Preliminary results provided strong support to the theoretical model prediction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

266-275

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wolff, The Law of Bone Remodelling. (translated into English by P. Maquet and R. Furlong). Springer Verlag, Berlin., (1986).

Google Scholar

[2] J. M. Bourgery, Trait complet de lanatomie de lhomme. I. Osteologic, 1832.

Google Scholar

[3] W. Roux, Der Zuchtende Kampf der Teile, oder die Teilauslese im Organismus (Theorie der Funktionellen Anpassung), W. Engelmann, Ed. Leipzig, 1881.

Google Scholar

[4] W. Roux, Die Entwicklungsmechanik; ein neuer Zweig der biologischen Wissenschaft., Leipzig, Ed. Wilhelm Engelmann, (1905).

DOI: 10.1007/978-3-642-93367-7_12

Google Scholar

[5] R. Huiskes, H. Weinans, H. J. Grootenboer, M. Dalstra, B. Fudala, and T. J. Slooff, Adaptive bone-remodeling theory applied to prosthetic design analysis, J Biomech, vol. 20, p.1135–1150, (1987).

DOI: 10.1016/0021-9290(87)90030-3

Google Scholar

[6] H. M. Frost, The Utah paradigm of skeletal physiology. ISMNI: International Society of Musculoskeletal and Neuronal Interactions, 2004, vol. I and II.

Google Scholar

[7] H. M. Frost, Presence of microscpoic cracks in vivo in bone., Henry Ford Hosp. Med. Bull., Tech. Rep. 8: 2535, (1960).

Google Scholar

[8] H. M. Frost, Mathematical Elements of Lamellar Bone Remodelling, C. C. Thomas, Ed. Springfield, (1964).

Google Scholar

[9] D. M. Raab, E. L. Smith, T. D. Crenshaw, and D. P. Thomas, Bone mechanical properties after exercise training in young and old rats, J. Appl. Physiol., vol. 68, p.130–134, Jan (1990).

DOI: 10.1152/jappl.1990.68.1.130

Google Scholar

[10] D. C. Welten, H. C. Kemper, G. B. Post, W. Van Mechelen, J. Twisk, P. Lips, and G. J. Teule, Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake, J. Bone Miner. Res., vol. 9, p.1089–1096, Jul (1994).

DOI: 10.1002/jbmr.5650090717

Google Scholar

[11] D. Kerr, A. Morton, I. Dick, and R. Prince, Exercise effects on bone mass in postmenopausal women are site-specific, J. Bone Miner. Res., vol. 11, p.218–225, Feb (1996).

DOI: 10.1002/jbmr.5650110211

Google Scholar

[12] L. Lanyon and T. Skerry, Postmenopausal osteoporosis as a failure of bone's adaptation to functional loading: a hypothesis, J. Bone Miner. Res., vol. 16, p.1937–1947, Nov (2001).

DOI: 10.1359/jbmr.2001.16.11.1937

Google Scholar

[13] J. C. Koch, Laws of bone architecture, Am. J. Anat., vol. 21, p.177–298, (1917).

Google Scholar

[14] F. Pauwels, Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer, Berlin., (1965).

DOI: 10.1007/978-3-642-86841-2

Google Scholar

[15] B. Kummer, Biomechanics of bone: mechanical properties, functional structure and functional adaptation. Prentice Hall. Englewood Cliffs, NJ., 1972, ch. Biomechanics: its foundations and objectives, p.237– 272.

Google Scholar

[16] S. C. Cowin and D. H. Hegedus, Bone remodeling I: theory of adaptive elasticity., J. of Elasticity, vol. 6, p.313–326, (1976).

DOI: 10.1007/bf00041724

Google Scholar

[17] W. C. Hayes and B. Snyder, Toward a quantitative formulation of Wolff's law in trabecular bone, Mechanical Properties of Bone, vol. 45, p.43–69, (1981).

Google Scholar

[18] A. G. Robling, A. B. Castillo, and C. H. Turner, Biomechanical and molecular regulation of bone remodeling, Annu Rev Biomed Eng, vol. 8, p.455–498, (2006).

DOI: 10.1146/annurev.bioeng.8.061505.095721

Google Scholar

[19] T. Wren, G. Beaupre, and D. Carter, A model for loading dependent growth, development, and adaptation of tendons and ligaments, J Biomech, vol. 31, p.107–114, Feb (1998).

DOI: 10.1016/s0021-9290(97)00120-6

Google Scholar

[20] X. L. Lu and V. C. Mow, Biomechanics of articular cartilage and determination of material properties, Med Sci Sports Exerc, vol. 40, p.193–199, Feb (2008).

DOI: 10.1249/mss.0b013e31815cb1fc

Google Scholar

[21] D. R. Carter, Mechanical loading history and skeletal biology, J Biomech, vol. 20, p.1095–1109, (1987).

Google Scholar

[22] R. Huiskes, R. Ruimerman, G. H. van Lenthe, and J. Janssen, Effects of mechanical forces on maintenance and adaptation of form in trabecular bone, Nature, vol. 405, p.704–706, Jun (2000).

DOI: 10.1038/35015116

Google Scholar

[23] J. H. Heegaard, G. S. Beaupre, and D. R. Carter, Mechanically modulated cartilage growth may regulate joint surface morphogenesis, J. Orthop. Res., vol. 17, p.509–517, Jul (1999).

DOI: 10.1002/jor.1100170408

Google Scholar

[24] W. M. Lai, J. S. Hou, and V. C. Mow, A triphasic theory for the swelling and deformation behaviors of articular cartilage, J Biomech Eng, vol. 113, p.245–258, Aug (1991).

DOI: 10.1115/1.2894880

Google Scholar

[25] J. E. Letechipia, A. Alessi, G. Rodriguez, and J. Asbun, Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling?, Med. Hypotheses, vol. 75, p.196–198, Aug (2010).

DOI: 10.1016/j.mehy.2010.02.021

Google Scholar

[26] T. Adachi, Y. Kameo, and M. Hojo, Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress, Philos Transact A Math Phys Eng Sci, vol. 368, p.2669–2682, Jun (2010).

DOI: 10.1098/rsta.2010.0073

Google Scholar

[27] H. M. Frost, Skeletal structural adaptations to mechanical usage (SATMU): 4. mechanical influences on intact fibrous tissues, Anat. Rec., vol. 226, p.433–439, Apr (1990).

DOI: 10.1002/ar.1092260405

Google Scholar

[28] D. Kaneko, Y. Sasazaki, T. Kikuchi, T. Ono, K. Nemoto, H. Matsumoto, and Y. Toyama, Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro, Connect. Tissue Res., vol. 50, p.263–269, (2009).

DOI: 10.1080/03008200902846270

Google Scholar

[29] C. T. Chen, R. P. McCabe, A. J. Grodzinsky, and R. Vanderby, Transient and cyclic responses of strain-generated potential in rabbit patellar tendon are frequency and ph dependent, J Biomech Eng, vol. 122, p.465–470, Oct (2000).

DOI: 10.1115/1.1289639

Google Scholar

[30] D. E. Ingber, Tensegrity and mechanotransduction, J Bodyw Mov Ther, vol. 12, p.198–200, Jul (2008).

Google Scholar

[31] V. Mow, S. Kuei, W. Lai, and C. Armstrong, Biphasic creep and stress relaxation of articular cartilage in compression? theory and experiments, J Biomech Eng, vol. 102, p.73–84, Feb (1980).

DOI: 10.1115/1.3138202

Google Scholar

[32] G. A. Ateshian and H. Wang, A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers, J Biomech, vol. 28, p.1341–1355, Nov (1995).

DOI: 10.1016/0021-9290(95)00008-6

Google Scholar

[33] H. M. Frost, Skeletal structural adaptations to mechanical usage (SATMU): 3. the hyaline cartilage modeling problem, Anat. Rec., vol. 226, p.423–432, Apr (1990).

DOI: 10.1002/ar.1092260404

Google Scholar

[34] F. Eckstein, M. Hudelmaier, and R. Putz, The effects of exercise on human articular carti-lage, J. Anat., vol. 208, p.491–512, Apr (2006).

DOI: 10.1111/j.1469-7580.2006.00546.x

Google Scholar

[35] J. Arokoski, J. Jurvelin, U. Vaatainen, and H. Helminen, Normal and pathological adaptations of articular cartilage to joint loading, Scand J Med Sci Sports, vol. 10, p.186–198, Aug (2000).

DOI: 10.1034/j.1600-0838.2000.010004186.x

Google Scholar

[36] M. Conconi and V. Parenti Castelli, A kinematic model of the tibio-talar joint using a minimum energy principle, in RoManSy 2008: 18th CISMIFToMM Symposium on Robot Design, Dynamics, and Control, Udine, Italy., (2010).

DOI: 10.1007/978-3-7091-0277-0_41

Google Scholar

[37] P. G. Bullough, The geometry of diarthrodial joints, its physiologic maintenance, and the possible significance of age-related changes in geometry-to-load distribution and the development of osteoarthritis, Clin. Orthop. Relat. Res., p.61–66, May (1981).

DOI: 10.1097/00003086-198105000-00008

Google Scholar

[38] W. H. Simon, S. Friedensberg, and S. Richardson, Joint congruence: a correlation of joint congruence and thickness of articular cartilage in dogs, Journal of Bone and Joint Surgery, vol. 55, p.1614–1620, (1973).

DOI: 10.2106/00004623-197355080-00004

Google Scholar

[39] G. Ateshian, M. Rosenwasser, and V. Mow, Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints, Journal of Biomechanics, vol. 25, no. 6, p.591 – 607, (1992).

DOI: 10.1016/0021-9290(92)90102-7

Google Scholar

[40] J. Hohe, G. Ateshian, M. Reiser, K. -H. Englmeier, and F. Eckstein, Surface size, curvature analysis, and assessment of knee joint incongruity with mri in vivo, Magnetic Resonance in Medicine, vol. 47, no. 3, p.554 – 61, (2002).

DOI: 10.1002/mrm.10097

Google Scholar

[41] K. Connolly, J. Ronsky, L. Westover, J. Kupper, and R. Frayne, Analysis techniques for congruence of the patellofemoral joint, Journal of Biomechanical Engineering, vol. 131, no. 12, pp.124-503–1 – 7, (2009).

DOI: 10.1115/1.3212111

Google Scholar

[42] D. Wilson and J. O'Connor, A three-dimensional geometric model of the knee for the study of joint forces in gate, Gait and Posture, vol. 5, p.108–115, (1997).

DOI: 10.1016/s0966-6362(96)01080-6

Google Scholar

[43] D. Wilson, J. Feikes, A. Zavatsky, and J. O'Connor, The components of passive knee move-ment are coupled to flexion angle, Journal of Biomechanics, vol. 33, no. 4, p.465 – 473, (2000).

DOI: 10.1016/s0021-9290(99)00206-7

Google Scholar

[44] A. Leardini, J. O'Connor, F. Catani, and S. Giannini, Kinematics of the human ankle complex in passive flexion; a single degree of freedom system, Journal of Biomechanics, vol. 32, no. 2, p.111 – 18, (1999).

DOI: 10.1016/s0021-9290(98)00157-2

Google Scholar

[45] E. S. Grood and W. J. Suntay, A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee, Journal of Biomechanical Engineering, vol. 135, p.136–144, May (1983).

DOI: 10.1115/1.3138397

Google Scholar

[46] R. Franci and V. Parenti-Castelli, A 5-5 one-degree-of-freedom fully parallel mechanism for the modeling of passive motion at the human ankle joint, in DETC2007, vol. 8 PART A, Las Vegas, NV, United states, 2007, p.637 – 644.

DOI: 10.1115/detc2007-34841

Google Scholar

[47] D. E. Shepherd and B. B. Seedhom, Thickness of human articular cartilage in joints of the lower limb, Ann. Rheum. Dis., vol. 58, p.27–34, Jan (1999).

DOI: 10.1136/ard.58.1.27

Google Scholar