Synchronous Drive Omnidirectional Minirobot

Article Preview

Abstract:

This paper presents an omnidirectional minirobot with conventional wheels that uses a synchro drive principle. The minirobot contains three pairs of conventional wheels and two D.C. motors. The transmission from the D.C. motors to the minirobot's wheels is achieved using geared mechanisms: three for steering and another three for displacement. The actuation and control system of the minirobot is described.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

294-301

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Alutei V. Măties M. O. Tătar, A. Scrob, Considerations regarding mechatronic systems for exploration tasks, Proceedings of the 2nd International Conference on Innovations, Recent Trends and Challenges in Mechatronics, Mechanical Engineering and New High-tech Products Development, Bucharest, 2010, pp.387-392.

Google Scholar

[2] M.O. Tătar, D. Mândru, I. Lungu, Three-Wheeled Minirobots, J. Robotica & Management, 11, (2006) 17-20.

Google Scholar

[3] M.O. Tătar, D., Mândru, Wheeled minirobots, Proceedings of the X International Conference on the Theory of Machines and Mechanisms, Liberec, 2008 pp.623-628.

Google Scholar

[4] M.O. Tătar, D., Mândru, Design of the mobile minirobots structures, Proceedings of IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR 2008), Cluj-Napoca, 2008, pp.337-340.

DOI: 10.1109/aqtr.2008.4588850

Google Scholar

[5] M.O., Tătar, A., Alutei D., Mândru, Mobile minirobots structures, in Visa Ion (Ed. ), SYROM'09, Springer, 2009, pp.185-192.

DOI: 10.1007/978-90-481-3522-6_14

Google Scholar

[6] P.J. Mc Kerrow, Introduction to Robotics, Adison - Wessley Co, (1991).

Google Scholar

[7] R. Siegwart, I. Nourbackhsh, Introduction to Autonomous Mobile Robots, The MIT Press, Massachsetts, (2004).

Google Scholar

[8] A G. Dudek, M. Jenkin, Computational principles of mobile robotics, Cambridge University Press, (2000).

Google Scholar

[9] J. Angeles, An Innovative Drive for Wheeled Mobile Robots, IEEE/ASME Transactions on Mechatronics, 10 (2005) 43-49.

DOI: 10.1109/tmech.2004.842231

Google Scholar

[10] V.J. González-Villela, S. Shair, R.M. Parkin, M. R Jackson, M. López-Parra, A. Ramírez-Reivich, Tracking linear trajectories with the spider®: a synchro-drive grass mower mobile robot, Ingeniería mecánica tecnología y desarrollo, 5(2007).

Google Scholar

[11] D. E Fisher, J.M. Holland, K.F. Kennedy, US Patent 5, 609, 216. (1997).

Google Scholar

[12] U-J. Jung, G.H. Choi and B.S. Kim, U.S. Patent 7, 634, 327 B2. (2009).

Google Scholar

[13] D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance, IEEE Robotics & Automation Magazine, 4 (1997) 23–33.

DOI: 10.1109/100.580977

Google Scholar

[14] N. Doh, H. Choset, Wan K. Chung, Accurate Relative Localization Using Odometry, Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Taipei, Taiwan, 2003, pp.1606-1612.

DOI: 10.1109/robot.2003.1241824

Google Scholar

[15] M. Zaman, J. Illingworth, Odometry Error Model for a Synchronous Drive Robot, Proceedings of the International Conference on Robotics, Vision, Information and Signal Processing ROVISP2007, Penang, Malaysia, 2007, pp.839-844.

Google Scholar

[16] O. S Kwon, Development of Synchro-drive Mobile Robot Base with Endless Rotate Type Turret, J. of the Korean Society of Precision Engineering, 22 (2005) 123-129.

Google Scholar

[17] Information on http: /www. digilentinc. com.

Google Scholar