An Inteligent Tasks Planning System for Industrial Mobile Robots

Article Preview

Abstract:

In this paper we present a general structure of an automatic task planner for a multirobot system. Our focus in this paper is to develop an intelligent complex task planning system that uses both model and case - based approach, while trying to come up with actions that support end goals. We provide an overall description of the proposed system and its integration in an implemented architecture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

308-315

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Arai, T., Pagello, E., Parker, L., E., Guest editorial advances in multirobot systems. In: Robotics and Automation, IEEE Transactions on, Vol. 18, No. 5. pp.655-661.

DOI: 10.1109/tra.2002.806024

Google Scholar

[2] Farinelli, A., Iocchi, L., Nardi, D., Multirobot systems: a classification focused on coordination. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(5): 2015-2028 (2004).

DOI: 10.1109/tsmcb.2004.832155

Google Scholar

[3] Muñoz-Avila, H. (2002) Case-Base Maintenance by Integrating Case Index Revision and Case Retention Policies in a Derivational Replay Framework. Computational Intelligence. Blackwell Publishers.

DOI: 10.1111/0824-7935.00145

Google Scholar

[4] Burgard, W. et al. 2000. Collaborative Multi-Robot Exploration., Proc. IEEE International Conference on Robotics and Automation (ICRA), San Francisco CA.

Google Scholar

[5] Gerkey, B. and M.J. Mataric. 2002. Pusher-watcher: An Approach to Fault-Tollerant Tightly-Coupled Robot Coordination., Proc. of the IEEE International Conference on Robotics and Automation (ICRA2002), Washington DC.

DOI: 10.1109/robot.2002.1013403

Google Scholar

[6] Lawton, J.R. et al. 2003. A Decentralized Approach to Formation Maneuvers., IEEE Transactions on Robotics and Automation, Vol 19, No 6, 933–941.

DOI: 10.1109/tra.2003.819598

Google Scholar

[7] Wei, W., Neuro-fuzzy and model-based motion control for mobile manipulator among dynamic obstacles, Science in China Series F: Information Sciences, vol. 46, pag. 14-30, (2003).

DOI: 10.1360/03yf9002

Google Scholar

[8] Yuchul Jung, Young K. Hwang, Manjai Lee, Case-Based Reasoning Approach to Task Planning of Home-Service Robots, Icat (2004).

Google Scholar

[9] Yao, Z., Gupta, K., Path planning with general end-effector constraints, Robotics and Autonomous Systems, vol. 55, pag. 316-327, (2007).

DOI: 10.1016/j.robot.2006.11.004

Google Scholar

[10] Goebelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and Nebel, B. 2010. Coming up With Good Excuses: What todo When no Plan Can be Found.

DOI: 10.1609/icaps.v20i1.13421

Google Scholar

[11] Schermerhorn, P., Scheutz, M.: Dynamic Robot Autonomy: Investigating the Effects of Robot Decision-Making in aHuman-Robot Team Task (2009).

DOI: 10.1145/1647314.1647328

Google Scholar

[12] Helms, E.; Schraft, R. D. & Hagele, M. (2002). rob@work: Robot assistant in industrial environments, Proceedings of 11th IEEE International Workshop on Robot and Human Interactive Communication, pp.399-404.

DOI: 10.1109/roman.2002.1045655

Google Scholar

[13] Iossifidis, I.; Bruckhoff, C.; Theis, C.; Grote, C.; Faubel, C.; Schoner, G. (2002).

Google Scholar

[14] Bischoff, R. (2001). System Reliability and Safety Concepts of the Humanoid Service Robot HERMES, Proceedings of the First IARP/IEEE-RAS Joint Workshop on Technical Challenge for Dependable Robots in Human Environments.

Google Scholar

[15] Stopp, A.; Baldauf, T.; Hantsche, R.; Horstmann, S.; Kristensen, S.; Lohnert, F.; Priem, C.; Ruscher, B. (2002).

DOI: 10.1109/roman.2002.1045653

Google Scholar

[16] Thomas J. Walsh, Sergiu Goschin, Michael L. Littman. Integrating Sample-Based Planning and Model-Based Reinforcement Learning. In Proceedings of AAAI'(2010).

DOI: 10.1609/aaai.v24i1.7689

Google Scholar

[17] S. Lee, Seung-Min B. and J. Lee (2007). Cognitive Robotic Engine: Behavioral Perception Architecture for Human-Robot Interaction, Human Robot Interaction.

DOI: 10.5772/5195

Google Scholar

[18] Spalzzi, L. 2001. A Survey on Case-Based Planning. Artificial Intelligence Review, 16(1).

Google Scholar

[19] Ontanon , S., Mishra, K., Sugandtg, K., and Ram, A. 2007. Case-based planning and execution for real-time strategy games. In Proceedings of ICCBR-2007, p.164–178.

Google Scholar