AR-Based Off-Line Programming of the RV-M1 Robot

Article Preview

Abstract:

This paper presents a prototype system for off-line programming of industrial robot RV-M1 using augmented reality technology. The system allows controlling a virtual model of the industrial robot co-located in the real environment, planning configurations, generating robot program and simulating the robot actions. The proposed architecture makes it possible to manipulate, pick or place the objects in the scene. The advantage of this system is use of inexpensive equipment for intuitive off-line programming of an industrial robot.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

344-351

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Neto, J.N. Pires, A.P. Moreira, CAD-based off-line robot programming, IEEE Conference on Robotics Automation and Mechatronics (2010) 516 – 521.

DOI: 10.1109/ramech.2010.5513141

Google Scholar

[2] C.J. Chen, S.K. Ong, A.Y.C. Nee, Y.Q. Zhou, Interactive Path Planning of a Haptic-based Virtual Robot Arm. International Journal of Interactive Design and Manufacturing 4 (2010) 113-123.

DOI: 10.1007/s12008-010-0088-2

Google Scholar

[3] N. Rodriguez, J. Jessel, P. Torguet, A Virtual Reality Tool for Teleoperation Research, Virtual Reality 6 (2002) 57-62.

DOI: 10.1007/s100550200006

Google Scholar

[4] J. Aleoti, S. Caselli, M. Reggian, Leveraging on a virtual environment for robot programming by demonstration, Robot Autonomous System 47 (2004) 153-161.

DOI: 10.1016/j.robot.2004.03.009

Google Scholar

[5] M. Zaeh, W. Vogl, Interactive laser-projection for programming industrial robots, Proc. of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality (2006) 125-128.

DOI: 10.1109/ismar.2006.297803

Google Scholar

[6] D. Talaba, I. Horváth, K. H. Lee, Special issue of Computer-Aided Design on virtual and augmented reality technologies in product design, Computer-Aided Design 42 (2010) 361-363.

DOI: 10.1016/j.cad.2010.01.001

Google Scholar

[7] R. Azuma, A survey of augmented reality, Presence: Teleoperators and Virtual Environments 6 (1997) 355-385.

DOI: 10.1162/pres.1997.6.4.355

Google Scholar

[8] P. Milgram, D. Drasic, S. Zhai Applications of Augmented Reality in Human-Robot, Proc. of the Second IEEE/RSJ International Conference on Intelligent Robots and Systems (1993) 1244-1249.

DOI: 10.1109/iros.1993.583833

Google Scholar

[9] T. Pettersen, J. Pretlove, C. Skourup, T. Engedal, T. Lokstad, Augmented Reality for Programming Industrial Robots, Proc. of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality (2003) 319-321.

DOI: 10.1109/ismar.2003.1240739

Google Scholar

[10] K. Ong, J. Chong, A. Nee, A novel AR-based robot programming and path planning methodology, Robotics and Computer-Integrated Manufacturing 26 (2010) 240–249.

DOI: 10.1016/j.rcim.2009.11.003

Google Scholar

[11] D. Araque, R. Diaz, B. Perez-Gutierrez, A.J. Uribe, Augmented reality motion-based robotics off-line programming, IEEE Virtual Reality Conference (2011) 191 – 192.

DOI: 10.1109/vr.2011.5759463

Google Scholar

[12] K. Foit, Remote programming of the Mitsubishi Movemaster robot by using the web-based interface, Journal of Achievements in Materials and Manufacturing Engineering 31 (2008) 636-645.

Google Scholar

[13] R. Kumar, P. Kalra, N. R. Prakash, A virtual RV-M1 robot system, Robotics and Computer-Integrated Manufacturing 27 (2011) 994-1000.

DOI: 10.1016/j.rcim.2011.05.003

Google Scholar

[14] J. Swider, K. Foit, G. Wszosek, D. Mastrowski, The system for simulation and offline, remote programming of the Mitsubishi Movemaster RV-M1 robot, Journal of Achievements in Materials and Manufacturing Engineering 25 (2007) 7-14.

Google Scholar

[15] JRobot. A Java interface for Mitsubishi RV-M1 Robot. http: /jrobot. sourceforge. net.

Google Scholar

[16] Mitsubishi Movemaster RV-M1 User's Manual.

Google Scholar

[17] F. Gîrbacia, T. Butnaru, C. Postelnicu, Methods for mobile robots programming based on co-located environment, Procedings of 3rd International Conference on Future Computer and Communication (2011) 139 – 144.

DOI: 10.1115/1.859711.paper22

Google Scholar

[18] T. Kang, D. Mastrowski, Solving Inverse Kinematics Constraint Problems for Highly Articulated Models, Master thesis, University of Waterloo, Ontario, Canada (2000). http: /www. cs. uwaterloo. ca/research/tr.

Google Scholar

[19] J. Denavit, RS. Hartenberg, A kinematic notation for lower-pair mechanisms based on matrices, Transactions of ASME 77 (1955) 215-221.

DOI: 10.1115/1.4011045

Google Scholar

[20] Instant Player VR/AR development library. www. instantreality. org.

Google Scholar