Towards a Virtual Reality Simulator for Orthognathic Basic Skils

Article Preview

Abstract:

Bone sawing skill demands a high level of dexterity from the surgeon that can be achieved only with a lot of training. Sawing is a basic skill required in many procedures, such as: osteotomy, ostectomy, amputation and arthroplasty surgery. Inefficient sawing can lead in orthognathic surgery to nerve lesion, bad split and non-union. Using virtual reality technology this complications can be reduced, by training the students on simulators until they assimilate the skill. This paper presents an early prototype for a bone sawing simulator in orthognathic surgery. A voxel-based mandible model obtained from a Computer Tomography is cut by removing the voxels that are inside the saw blade. The collision detection is based on hierarchical bounding volumes. The removal process is observed both visually and haptically.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

352-357

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on http: /herkules. oulu. fi/isbn9514267508/isbn9514267508. pdf.

Google Scholar

[2] A.G. Gallagher, E.M. Ritter, H. Champion, G. Higgins, M.P. Fried, G. Moses, C.D. Smith, R.M. Satava, Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training, Ann surg, 241 (2005).

DOI: 10.1097/01.sla.0000151982.85062.80

Google Scholar

[3] Y. Aoki, S. Hashimoto, M. Terajima, A. Nakasima, Simulation of postoperative 3D facial morphology using a physics-based head model, The Visual Computer, 17 (2001) 121-131.

DOI: 10.1007/pl00013401

Google Scholar

[4] J. Xia, H.H.S. Ip, N. Samman, H.T.F. Wong, J. Gateno, D. Wang, R.W.K. Yeung, C.B.S. Kot, H. Tideman, Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery, IEEE Trans Inf Technol Biomed, 5 (2001).

DOI: 10.1109/4233.924800

Google Scholar

[5] T. Sohmura, H. Hojo, M. Nakajima, K. Wakabayashi, M. Nagao, S. Iida, T. Kitagawa, M. Kogo, T. Kojima, K. Matsumura, T. Nakamura, J. Takahashi, Prototype of simulation of orthognathic surgery using a virtual reality haptic device. Int J Oral Maxillofac Surg, 33 (2004).

DOI: 10.1016/j.ijom.2004.03.003

Google Scholar

[6] D. Morris, S. Girod, F. Barbagli, K. Salisbury K, An Interactive Simulation Environment for Craniofacial Surgical Procedures, Health Technol Inform, 111 (2005) 334-341.

Google Scholar

[7] N. Kusumoto, T. Sohmura, S. Yamada, K. Wakabayashi, T. Nakamura, H. Yatani, Application of virtual reality force feedback haptic device for oral implant surgery, Clin Oral Impl Res, 17 (2006) 708–713.

DOI: 10.1111/j.1600-0501.2006.01218.x

Google Scholar

[8] K. Kim, J. Park, Virtual Bone Drilling for Dental Implant Surgery Training, Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, Kyoto, Japan, (2009) 91-94.

DOI: 10.1145/1643928.1643950

Google Scholar

[9] J. Forsslund, E.L. Sallnas, K.J. Palmerius, A user-centered designed FOSS implementation of bone surgery simulations, Joint Eurohaptics Conf Symp Haptic Interfaces Virtual Environ Teleoper Syst, (2009) 391-392.

DOI: 10.1109/whc.2009.4810916

Google Scholar

[10] Q. Wang, H. Chen, J.H. Wu, Y.J. Peng, P.W. Sang, P.A. Heng, Dynamic Touch-enable Bone Drilling Interaction, Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine, in conjunction with The 2nd International Symposium & Summer School on Biomedical and Health Engineering, Shenzhen, China, (2008).

DOI: 10.1109/itab.2008.4570581

Google Scholar

[11] D. Morris, C. Sewell, N. Blevins, F. Barbagli, K. Salisbury, A Collaborative Virtual Environment for the Simulation of Temporal Bone Surgery, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, (2004) 319-327.

DOI: 10.1007/978-3-540-30136-3_40

Google Scholar

[12] M. Agus, Haptic and Visual Simulation of Bone Dissection, PhD. thesis, Universita degli Studi di Cagliari, Italy, (2004).

Google Scholar

[13] A. Petersik, B. Pflesser, U. Tiede, K.H. Hӧhne, R. Leuwer, Realistic Haptic Interaction in Volume Sculpting for Surgery Simulation, Comput Biol Med, 37 (2007) 1709 – 1718.

DOI: 10.1007/3-540-45015-7_19

Google Scholar

[14] M.S. Hsieh, M.D. Tsai, Y.D. Yeh, An Amputation Simulator with Bone Sawing Haptic Interaction, Biomed Eng Appl Basis Comm, 18 (2006) 229-236.

DOI: 10.4015/s1016237206000361

Google Scholar

[15] M.D. Tsai, M.S. Hsieh, C.H. Tsai, Bone drilling haptic interaction for orthopedic surgical simulator, Comput Biol Med, 37 (2007) 1709-1718.

DOI: 10.1016/j.compbiomed.2007.04.006

Google Scholar

[16] M. Arbabtafti, M. Moghaddam, A. Nahvi, M. Mahvash, B. Richardson, Physics-Based Haptic Simulation of Bone Machining, IEEE Transaction on Haptics, 4 (2011) 39-50.

DOI: 10.1109/toh.2010.5

Google Scholar

[17] M. Eriksson, H. Flemmer, J. Wikander, A Haptic and Virtual Reality Temporal Bone Surgery Simulator, Submitted to Advanced Robotics March (2005).

Google Scholar

[18] S.B. Issenberg, W.C. McGaghie, E.R. Petrusa, D. Lee Gordon, R.J. Scalese, Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review, Med Teach, 27 (2005) 10-28.

DOI: 10.1080/01421590500046924

Google Scholar

[19] P.A. Yushkevich, J. Piven, H.C. Hazlett, R.G. Smith, S. Ho, J.C. Gee, G. Gerig, User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability, Neuroimage, 31 (2006) 1116-1128.

DOI: 10.1016/j.neuroimage.2006.01.015

Google Scholar