A Linear Electrostatic Induction Motor with Coils Mounted on its Slider for Voltage Boosting

Article Preview

Abstract:

This paper introduces a linear electrostatic induction motor utilizing electrical resonance. The motor consists of two thin plastic films: the stator film and the slider film, in which fine-pitched three-phase electrodes are embedded. The motor has three coils mounted on its slider, which are connected to the slider electrodes, and driven by applying three-phase voltage to its stator electrodes. The voltages on the slider electrodes are boosted by an electrical resonance, and large thrust force is obtained. The motors capability to accelerate under load is demonstrated; it could pull up weights up to 80 g with an excitation voltage of 1 kV0-P / 12.8 kHz, which was the motors resonance frequency. The fastest motion of the slider was obtained when the excitation frequency was set slightly higher than the resonance frequency, and the motor traveled 34 mm in 0.16 seconds with 1 kV0-P / 13.1 kHz excitation, while pulling up a weight of 40 g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

515-522

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. D. Jefimenko, Electrostatic Motors -Their History, Types, and Principles of Operation-. Electret Scientific Company, (1973).

Google Scholar

[2] J. U. Jeon and T. Higuch, Induction motors with electrostatic suspension, J. Electrost. 45 (1998) 157-173.

Google Scholar

[3] R. Moser and T. Higuchi, Electrostatic rotation of glass disc, J. Electrost. 55 (2002) 97-108.

Google Scholar

[4] F. Fuzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, and H. Bleuler, An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms. Review of Scientic Instruments 78 (10) (2007).

DOI: 10.1063/1.2800777

Google Scholar

[5] M. Dadkhah, Y. Hojjat, M. Modabberifar and T. Higuchi, Experimental investigation of parameters influencing electrostatic motor's performance with air bearing operation, Int. J. Adv. Manuf. Technol. 43 (2009) 211-216.

DOI: 10.1007/s00170-008-1710-3

Google Scholar

[6] M. Modabberifar, A. Yamamoto and T. Higuchi, Modeling of an electrostatic induction actuator for dielectric sheet conveying, Sensors & Actuators A: Physical, 161 (2010) 271-277.

DOI: 10.1016/j.sna.2010.05.021

Google Scholar

[7] S. Bart and J. Lang, Electroquasistatic induction micromotors, in Proc. IEEE MEMS (1989) 7-12.

Google Scholar

[8] C. Livermore, A. R. Forte, T. Lyszczarz, S. D. Umans, A. A. Ayon and J. H. Lang, A high-power mems electric induction motor, J. MEMS. 13 (3) (2004) 465-471.

DOI: 10.1109/jmems.2004.828736

Google Scholar

[9] S. Nagle, C. Livermore, L. Frechette, R. Ghodssi and J. Lang, An electric induction micromotor, J. MEMS. 14 (5) (2005) 1127-1143.

DOI: 10.1109/jmems.2005.851816

Google Scholar

[10] F. J. Santana Martín, S. García-Alonso Montoya, J. M. Monzón Verona and J. A. Montiel-Nelson, Analysis and modeling of an electrostatic induction micromotor, in Proc. ICEM (2008) 1-5.

DOI: 10.3390/s101009102

Google Scholar

[11] J.L. Steyn, S.H. Kendig, R. Khanna, S.D. Umans, J.H. Lang, and C. Livermore, A self-excited mems electro-quasi-static induction turbine generator, J. MEMS, 18 (2) (2009) 424-432.

DOI: 10.1109/jmems.2008.2011692

Google Scholar

[12] B. Bollée, Electrostatic motors, Philips Tech. Rev. 30 (6/7) (1969) 178-194.

Google Scholar

[13] C. Kooy, Torque on a resistive rotor in a quasi electrostatic rotating field, Appl. Scientif. Res. 20 (2-3) (1969) 161-172.

DOI: 10.1007/bf00382390

Google Scholar

[14] J. Ubbink, Optimization of the rotor surface resistance of the asynchronous electrostatic motor, Appl. Scientif. Res. 22 (6) (1970) 442-448.

DOI: 10.1007/bf00400547

Google Scholar

[15] S. D. Choi and D. A. Dunn, A surface-charge induction motor, in Proc. IEEE, 59 (5) (1971) 737-748.

DOI: 10.1109/proc.1971.8253

Google Scholar

[16] E. R. Mognaschi and J. H. Calderwood, Asynchronous dielectric induction motor, Proc. IEE 137 (6) (1990) 331-338.

DOI: 10.1049/ip-a-2.1990.0051

Google Scholar

[17] T. Hosobata, A. Yamamoto and T. Higuchi, An electrostatic induction motor utilizing electrical resonance for torque enhancement, Sensors & Actuators: A. Physical, 173 (2012) 180-189.

DOI: 10.1016/j.sna.2011.10.014

Google Scholar

[18] T. Niino, T. Higuchi and S. Egawa, Dual excitation multiphase electrostatic drive, in: Proc. IEEE IAS 2 (1995) 1318-1325.

DOI: 10.1109/ias.1995.530454

Google Scholar

[19] A. Yamamoto, T. Niino and T. Higuchi, Modeling and identification of an electrostatic motor, Precision Engineering 30 (1) (2006) 104-113.

DOI: 10.1016/j.precisioneng.2005.06.004

Google Scholar

[20] A. Yamamoto, T. Niino, T. Ban and T. Higuchi, High-power electrostatic motor using skewed electrodes, Electr. Eng. Jpn. 125 (3) (1998) 50-58.

DOI: 10.1002/(sici)1520-6416(19981130)125:3<50::aid-eej6>3.0.co;2-r

Google Scholar