Low-Temperature Synthesis and Characterization of Single-Phase BiFeO3 Nano-Crystallites

Article Preview

Abstract:

Single-phase BiFeO3 (BFO) nano-crystallites were successfully synthesized in the temperature range of 500  750 oC by a simple diluted HNO3 sol method. During the crystallization process no intermediate phases were observed. As an example, we studied the electronic structure and thermodynamic stability of the BFO nano-crystallites calcined at 750 oC by X-ray photoelectron spectroscopy (XPS) and differential scanning calorimetry (DSC). The XPS showed that the oxidation state of Fe is Fe3+. The DSC indicated a novel exothermic peak at about 769 oC during cooling, which might be due to Bi2Fe4O9 or some other phases produced in the decomposition of BFO at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-119

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299 (2003).

DOI: 10.1126/science.1080615

Google Scholar

[2] N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha and S-W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields, Nature 429 (2004) 392-395.

DOI: 10.1038/nature02572

Google Scholar

[3] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, Magnetic control of ferroelectric polarization, Nature 426 (2003) 55-58.

DOI: 10.1038/nature02018

Google Scholar

[4] J.F. Scott, Applications of Modern Ferroelectrics, Science 315 (2007) 954-959.

Google Scholar

[5] P. Fischer, M. Polomska, I. Sosnowska and M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3, J. Phys. C 13 (1980) 1931-(1940).

DOI: 10.1088/0022-3719/13/10/012

Google Scholar

[6] W. Eerenstein, N.D. Mathur and J.F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759-765.

DOI: 10.1038/nature05023

Google Scholar

[7] G. Catalan and J.F. Scott, Physics and Applications of Bismuth Ferrite, Adv. Mater. 21 (2009) 2463-2485.

DOI: 10.1002/adma.200802849

Google Scholar

[8] Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J. -M. Liu and Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl. Phys. Lett. 84 (2004) 1731-1733.

DOI: 10.1063/1.1667612

Google Scholar

[9] X.D. Qi, J. Dho, R. Tomov, M.G. Blamire and J.L. MacManus-Dirscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3, Appl. Phys. Lett. 86 (2005) 062903-1-3.

DOI: 10.1063/1.1862336

Google Scholar

[10] J.K. Kim, S.S. Kim and W. -J. Kim, Sol–gel synthesis and properties of multiferroic BiFeO3, Mater. Lett. 59 (2005) 4006-4009.

DOI: 10.1016/j.matlet.2005.07.050

Google Scholar

[11] J. -C. Chen and J. -M. Wua, Dielectric properties and ac conductivities of dense single-phased BiFeO3 ceramics, Appl. Phys. Lett. 91 (2007) 182903-1-3.

DOI: 10.1063/1.2798256

Google Scholar

[12] C. Chen, J.R. Cheng, S.G. Yu, L.J. Che and Z.Y. Meng, Hydrothermal synthesis of perovskite bismuth ferrite crystallites, J. Crystal Growth 291 (2007) 135-139.

DOI: 10.1016/j.jcrysgro.2006.02.048

Google Scholar

[13] V.F. Freitas, H.L.C. Grande, S.N.D. Medeiros, I.A. Santos, L.F. Cótica and A.A. Coelho, Structural, microstructural and magnetic investigations in high-energy ball milled BiFeO3 and Bi0. 95Eu0. 05FeO3 powders, J. Alloys Compd. 461 (2008) 48-52.

DOI: 10.1016/j.jallcom.2007.07.069

Google Scholar

[14] S.M. Selbach, M. -A. Einarsrud, T. Tybell and T. Grande, Synthesis of BiFeO3 by Wet Chemical Methods, J. Am. Ceram. Soc. 90 (2007) 3430-3434.

DOI: 10.1111/j.1551-2916.2007.01937.x

Google Scholar

[15] J. H. Xu, H. Ke, D. C. Jia, W. Wang and Y. Zhou, Low-temperature synthesis of BiFeO3 nanopowders via a sol–gel method, J. Alloys Compd. 472 (2009) 473-477.

DOI: 10.1016/j.jallcom.2008.04.090

Google Scholar

[16] T. Xian, H. Yang, X. Shen, J.L. Jiang, Z.Q. Wei and W.J. Feng, Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route, J. Alloys Compd. 480 (2009) 889-892.

DOI: 10.1016/j.jallcom.2009.02.068

Google Scholar

[17] M.M. Kumar and V.R. Palkar, Ferroelectricity in a pure BiFeO3 ceramic, Appl. Phys. Lett. 76 (2000) 2764-2766.

DOI: 10.1063/1.126468

Google Scholar