Ferroelectric and Optical Properties of BST/BZT/BST Sandwich Structure Thin Films Prepared by RF Sputtering

Article Preview

Abstract:

In this work, (Ba0.65Sr0.35)TiO3 (BST) and Ba(Zr0.20Ti0.80)O3 (BZT) ceramic targets were prepared using the traditional solid-state reaction technique, which were sintered at 1200 °C for 2 h. The thin films of BST, BZT and sandwich structure BST/BZT/BST were grown on Pt/Ti/SiO2/Si(100) and Si(100) substrates by rf-sputtering at 500 °C, respectively. And all samples crystallied at temperatures 650 °C for 30 min in oxygen atmosphere. The cross-sectional images of the thin films were characterized by scanning electron microscope (SEM). The dielectric constant and dissipation factor tan of the BZT, BST and BST/BZT/BST thin films are 680 and 0.030, 240 and 0.021, 85 and 0.018, respectively at 100 kHz. Compared with BST and BZT films, the BST/BZT/BST film has lower dielectric constant and lower dissipation. The remanent polarization (Pr) of the sandwich structure BST/BZT/BST thin film is up to 9.57 μC/cm2, the Pr value is larger than that BST (0.25μC/cm2) film and BZT (8.45μC/cm2) film. The optical properties (refractive index n and extinction coefficient k) of the BST/BZT/BST film on Si(100) substrate were measured by n & k analyzer 2000.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-51

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. M. Lee, S. Y. Kang, J. C. Shin, W. J. Kim,C. S. Hwang, and H. J. Kim, Appl. Phys. Lett., 74(1997)151-742.

Google Scholar

[2] S. Zafar, R. E. Jones, B. Jiang, B. White, P. Chu, D. Taylor, and S. Gillespie, Appl. Phys. Lett. 73(1998) 175-177.

Google Scholar

[3] O. Jim, O. Auciello, P. K. Baumann, S.K. Streiffer, D. Y. Kaufman, and A. R. Krauss, Appl. Phys. Lett. 10(2000)761-763.

Google Scholar

[4] W.J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S.W. Kirchoefer, D. B. Chrisey, and J.S. Horwitz, Appl. Phys. Lett., 70 (2000)313-316.

Google Scholar

[5] J. Y. Wang, J. J. Zhang, and X. Yao, J. Alloy. Compd. 505(2010)783–786.

Google Scholar

[6] X.G. Tang, K.H. Chew, and H.L.W. Chan, Acta Mater. 52(2004)517-523.

Google Scholar

[7] X.G. Tang, J. Wang, and H.L.W. Chan, J. Crystal Growth, 276(2005)453-457.

Google Scholar

[8] X. G. Tang, X. X. Wang, and H. L. W Chan, Solid State Commun. 136(2005)89-93.

Google Scholar

[9] N. Y. Chan, G. Y. Gao, Y. Wang and H. L.W. Chan, Thin Solid Films, 518(2010)e82-e84.

Google Scholar

[10] W.F. Qin, J. Xiong, J. Zhu, J.L. Tang, W.J. Jie, and Y.R. Li, J. Mater. Sci. 43(2008)409-412.

Google Scholar

[11] J. Garcia-Barriocanal, Rivera-Calzada A, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, and S. J. Pennycook, J. Santamaria, Science, 321(2008)676-680.

DOI: 10.1126/science.1156393

Google Scholar

[12] S.U. Adikary, AL. Ding, and H.L.W. Chan, Appl. Phys. A. 75, (2002) 597-600.

Google Scholar

[13] S. Sheng and C. K. Ong, Appl. Phys. Lett. 44(2011)165-170.

Google Scholar

[14] X. G. Tang, Q. X. Liu, L. L. Jiang, and A. L. Ding, Mater. Chem. Phys., 103 (2007)329-333.

Google Scholar

[15] S.Z. Li, Y.Q. Yang, L. Liu, W.C. Liu, S.B. Wang, Physica B 403 (2008) 2618–2623.

Google Scholar

[16] J.Z. Xin, C.W. Leung, H.L.W. Chan, Thin Solid Films 519 (2011) 6313–6318.

Google Scholar