[1]
Fletcher, Reeves,C.M, Function Minimization by Conjugate gradients, Computer Journal, Vol7, 1964, 149-154,.
Google Scholar
[2]
R.Fletcher, Practical Methods of Optimization, Vol I, Unconstrained Optimization , 2nd edition, Wiley, New YorK,1987.
Google Scholar
[3]
Y.H. Dai, Y.Yuan, A nonlinear conjugate gradient methods with a strong global convergence property, SIAM J.Optim.10(1999),177-182.
DOI: 10.1137/s1052623497318992
Google Scholar
[4]
M.R,Hestenes,E.Stiefel, Methods of conjugate gradient for solving linear equation, J.Res.Nat.Bur.Standards 49 (1952),409-436.
DOI: 10.6028/jres.049.044
Google Scholar
[5]
B.T. Polyak, The conjugate gradient methods in extreme problem, U.S.S.R. Comput. Math. And .Math. Phys.9(1969), 94-112.
Google Scholar
[6]
Y.Dai L.Z. Liao,New conjugacy condition and related nolinear conjugate gradient methods , Appl.Math.Optim.43(2001),87-101.
Google Scholar
[7]
Y.H. Dai,Y.Yuan, Nonlinear Conjugate gradient Methods, 2000.
Google Scholar
[8]
G.H. Liu L.L. Jing ,A class of Nonmonotone Conjugate gradient Methods for unconstrained Optimization,JOTA Vol.101(1999) ,No.1. 127-140.
DOI: 10.1023/a:1021723128049
Google Scholar
[9]
P.ARMAND, Modification of the Wolfe Line search Rules to Satisfy the Descent Condition in the PRP Conjugate Gradient Method, JOTA Vol.132(2007),No.2.pp.287-305.
DOI: 10.1007/s10957-006-9123-7
Google Scholar
[10]
Grippo L, Lucidi S.A globally eonvergent version of the Polak-Ribieve Conjugate Gradient Methods. MathematicalProgramming,1997,78:375一391.
DOI: 10.1007/bf02614362
Google Scholar
[11]
Y.Dai, Conjugate Gradient Methods with Armijo-type Line , Acta Mathematicae Applicatae sinica,English Series,18(l),2002,123-130.
DOI: 10.1007/s102550200010
Google Scholar
[12]
S.J.L.,An convergent research of Conjugate gradient Methods 2004.A doctor paper .(In chinese).
Google Scholar
[13]
Birgin EG,Martineijm and Raydanm, Nonmonotone Spectral Projected Gradient methods on convex sets, SIAM Journal on optimization, 10:1,2000, 196-1211.
DOI: 10.1137/s1052623497330963
Google Scholar