[1]
C. Boller, F.K. Chang, Y. Fujino, Encyclopedia of Structural Health Monitoring, John Wiley&Sons (2009)
Google Scholar
[2]
D. Balageas, C. P. Fritzen, A. Güemes, Structural health monitoring, ISTE Ltd (2006),ch2
Google Scholar
[3]
N. Roveri, A. Carcaterra, Damage detection in structures under traveling loads by Hilbert-Huang transform, Mechanical Systems and Signal Processing (2011).
DOI: 10.1016/j.ymssp.2011.06.018
Google Scholar
[4]
C.R. Farrar, D.A. Jauregui, Comparative study of damage identification algorithms applied to a bridge: I. Experiment, Smart Materials and Structures 7 (1998) 704–719.
DOI: 10.1088/0964-1726/7/5/013
Google Scholar
[5]
F. Vestroni, J. Ciambella, F. Dell'Isola, S. Vidoli, Damage detection with auxiliary subsystems, CIMTEC 2008–in: Proceedings of Third International Conference on Smart Materials, Structures and Systems–Emboding Intelligence in Structures and Integrated Systems, vol. 56, p.401–413
Google Scholar
[6]
N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London, Series A 454 (1998) 903–995
DOI: 10.1098/rspa.1998.0193
Google Scholar
[7]
J. Chance, G.R. Thomlinson, K. Worden, A simplified approach to the numerical and experimental modeling of the dynamics of a cracked beam, in Proceedings of the 12th International Modal Analysis Conference, Honolulu, USA, 1994, p.778–785
Google Scholar
[8]
W.J. Staszewski, Structural and mechanical damage detection using wavelets, The Shock and Vibration Digest 30 (6) (1998) 457–472.
DOI: 10.1177/058310249803000602
Google Scholar
[9]
T. Kijewski, A. Kareem, Wavelet transform for system identification in civil engineering, Computer-Aided Civil and Infrastructure Engineerin g 18 (5) (2003) 339–355.
DOI: 10.1111/1467-8667.t01-1-00312
Google Scholar
[10]
S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1998.
Google Scholar
[11]
B.A.D. Piombo, A. Fasana, S. Marchesiello, M. Ruzzene, Modelling and identification of the dynamic response of a supported bridge, Mechanical Systems and Signal Processing 14 (1) (2000) 75–89.
DOI: 10.1006/mssp.1999.1266
Google Scholar
[12]
J.W. Lee, J.D. Kim, C.B. Yun, J.H. Yi, J.M. Shim, Health-monitoring method for bridges under ordinary traffic loadings, Journal of Sound and Vibration 257 (2) (2002) 247–264.
DOI: 10.1006/jsvi.2002.5056
Google Scholar
[13]
L. Cohen, Time–Frequency Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1995.
Google Scholar
[14]
D. Vakman, On the analytic signal, the teager-kaiser energy algorithm, and other methods for defining amplitude and frequency, IEEE Transactions on Signal Processing 44 (4) (1996) 791–797.
DOI: 10.1109/78.492532
Google Scholar
[15]
D.E. Vakman, On the definition of concepts of amplitude, phase and instantaneous frequency of a signal, Radio Engineering and Electronic Physics17 (5) (1972) 754–759.
Google Scholar
[16]
G. Rilling, P. Flandrin, P. Goncalves, On empirical mode decompositions and its algorithms, in: Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy, (2003).
Google Scholar
[17]
G. Kerschen, A.F. Vakakis, Y.S. Lee, D.M. McFarland, L.A. Bergman, Toward a fundamental understanding of the Hilbert–Huang transform in nonlinear structural dynamics, Journal of Vibration and Control 14 (1–2) (2008) 77–105.
DOI: 10.1177/1077546307079381
Google Scholar
[18]
M. Feldman, Hilbert Transform Applications in Mechanical Vibration, First Edition, John Wiley & Sons, (2011) 292 pp.
Google Scholar
[19]
H.P. Lin, S.C. Chang, J.D. Wu, Beam vibrations with an arbitrary number of cracks, Journal of Sound and Vibration 258 (5) (2002) 987–999.
DOI: 10.1006/jsvi.2002.5184
Google Scholar
[20]
N. Huang, N. O. Attoh-Okine, The Hilbert-Huang Transform in Engineering, Taylor & Francis (2005)
Google Scholar
[21]
N. E. Huang, S. S. P. Shen, The Hilbert-Huang Transform and Its Applications, World Scientific (2005)
Google Scholar