An Analysis of Temperature Plume Distance for BHE with Groundwater Advection

Article Preview

Abstract:

In the ground source heat pump (GSHP) system, the temperature around the borehole exchangers (BHEs) would continue to spread further because of the heat accumulation, in addition the groundwater advection would have an important impact on the thermal dispersion. In order to have more accurate spacing between holes for design, the definition of temperature plume distance is proposed, based on the steady-state model with groundwater advection in porous media, the approximate analytical expression of temperature plume distance was obtained, the factors affecting the temperature plume distance was analyzed by comparing to infinite line source (ILS) model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2644-2651

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ingersoll L, Zobel O, Ingersoll. A. Heat conduction with engineering, geological and other applications. New York: McGraw-Hill; (1954)

DOI: 10.1126/science.108.2816.694.a

Google Scholar

[2] C. Yavuzturk, J. Spitler, A short time step response factor model for vertical ground loop heat exchangers, ASHRAE Transactions 105 (2) (1999) 475–485.

Google Scholar

[3] S. Rottmayer, W. Beckman, J. Mitchell, Simulation of a single vertical U-tube ground heat exchanger in an infinite medium, ASHRAE Transactions 103 (2) (1997) 651–659.

Google Scholar

[4] C. Yavuzturk, J. Spitler, S. Ree, A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers, ASHRAE Transactions 105 (2) (1999) 465–474.

Google Scholar

[5] Y. Nam, R. Ooka, S. Hwang, Development of a numerical model to predict heat exchange rates for a ground-source heat pump system, Energy and Buildings 40(12) (2008) 133–2140.

DOI: 10.1016/j.enbuild.2008.06.004

Google Scholar

[6] P. Eskilson, Thermal analysis of heat extraction boreholes, Ph.D. Thesis, Lund University, 1987.

Google Scholar

[7] C. Lee, H. Lam, Effects of groundwater flow direction on performance of ground heat exchanger borefield in geothermal heat pump systems using 3-D finite difference method, in: Proceedings of Building Simulation Conference, Beijing,China, 2007.

Google Scholar

[8] A. Chiasson, J. Rees, J. Spitler, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (1) (2000) 380–393.

Google Scholar

[9] N. Diao, Q. Li, Z. Fang, Heat transfer in ground heat exchangers with groundwater advection, International Journal of Thermal Science 43 (12) (2004) 1203–1214.

DOI: 10.1016/j.ijthermalsci.2004.04.009

Google Scholar

[10] R. Fan, Y. Jiang, Y. Yao, A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection, Energy 32 (11)(2007) 2199–2209.

DOI: 10.1016/j.energy.2007.05.001

Google Scholar

[11] J. Hecht-Méndez, N. Molina-Giraldo, P. Blum, P. Bayer, Evaluating MT3DMS for heat transport simulation of closed shallow geothermal systems, Groundwater 48 (5) (2010) 741-756.

DOI: 10.1111/j.1745-6584.2010.00678.x

Google Scholar

[12] S. Hähnlein, N. Molina-Giraldo, P. Blum, P. Bayer, P. Grathwohl, Ausbreitung von Kältefahnen im Grundwasser bei Erdwärmesonden. (Cold plumes in groundwater for ground source heat pump systems), Grundwasser 15 (2010)123 133.

DOI: 10.1007/s00767-009-0125-x

Google Scholar

[13] S. Pannike, M. Kölling, B. Panteleit, J. Reichling, V. Scheps, H.D. Schulz, Auswirkung hydrogeologischer Kenngrößen auf die Kältefahnen von Erdwärmesondenanlagen in Lockersedimenten, Grundwasser 11 (2006) 6-18.

DOI: 10.1007/s00767-006-0114-2

Google Scholar

[14] S. Hähnlein, P. Bayer, P. Blum, International legal status of the use of shallow geothermal energy, Renew. Sustain. Energ. Rev. 14 (2010) 2611-2625.

DOI: 10.1016/j.rser.2010.07.069

Google Scholar

[15] A.D. Chiasson, S.J. Rees, J.D. Spitler, A preliminary assessment of the effects of ground water flow on closed-loop ground-source heat pump systems, ASHRAE Trans. 106 (1) (2000) 380-393.

Google Scholar

[16] G. de Marsily, Quantitative Hydrogeology. Academic Press, San Diego, California, 1986.

Google Scholar

[17] T. Metzger, S. Didierjean, D. Maillet, Optimal experimental estimation of thermal dispersion coefficients in porous media, Int. J. Heat Mass Transf. 47(14-16) (2004) 3341-3353

DOI: 10.1016/j.ijheatmasstransfer.2004.02.024

Google Scholar

[18] C.T. Hsu, P. Cheng, Thermal dispersion in a porous medium, Int. J. Heat Mass Transf. 33 (8) (1990) 1587-1597.

DOI: 10.1016/0017-9310(90)90015-m

Google Scholar

[19] X. Lu, Experimental investigation of thermal dispersion in saturated soils with one dimension -al water flow, Soil Sci. Soc. Am. J. 73 (6) (2009) 1912-1920.

DOI: 10.2136/sssaj2008.0251

Google Scholar

[20] M.H.J. Pedras, M.J.S. de Lemos, Thermal dispersion in porous media as a function of the solid fluid conductivity ratio, Int. J. Heat Mass Transf. 51(21-22) (2008) 5359-5367.

DOI: 10.1016/j.ijheatmasstransfer.2008.04.030

Google Scholar

[21] J. Levec, R.G. Carbonell, Longitudinal and lateral thermal dispersion in packed beds. Part II. Comparison between theory and experiment, AIChE J. 31 (4)(1985) 591-602.

DOI: 10.1002/aic.690310409

Google Scholar