[1]
E. Boukas and Z. Liu, Delay-dependent stability analysis of singular linear continuous-time system, IEE Proc. Control Theory Appl., vol. 150, pp.325-330, (2003).
DOI: 10.1049/ip-cta:20030635
Google Scholar
[2]
E. Fridman, and U. Shaked, H∞ control of linear state-delay descriptor systems: an LMI approach, Linear Algebra and its Appl., vol. 351, pp.271-302, (2002).
DOI: 10.1016/s0024-3795(01)00563-8
Google Scholar
[3]
J. Gao, H. Su, and J. Chu, New Delay-Dependent Criteria for Robust Stability of Uncertain Singular Systems, (IFAC'2008): pp.2484-2489, (2008).
DOI: 10.3182/20080706-5-kr-1001.00419
Google Scholar
[4]
J. Hale, Functional Differential Equations. New York: Springer-Verlag, (1977).
Google Scholar
[5]
X. Ji, H. Su, and J. Chu, An LMI approach to robust stability of uncertain discrete singular time-delay systems, Asian Journal of Control, vol. 8, pp.56-62, (2006).
DOI: 10.1111/j.1934-6093.2006.tb00252.x
Google Scholar
[6]
J. Lee, S. Kim, and W. Kwon, Memoryless H∞ controllers for state delayed systems, IEEE Trans. Automatic Control, vol. 39, pp.159-162, (1994).
DOI: 10.1109/9.273356
Google Scholar
[7]
X. Meng, J. Lam, B. Du, and H. Gao, A delay-partitioning approach to the stability analysis of discrete-time systems, Automatica, vol. 46, pp.610-614, (2010).
DOI: 10.1016/j.automatica.2009.12.004
Google Scholar
[8]
Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Control, vol. 74, pp.1447-1455, (2001).
DOI: 10.1080/00207170110067116
Google Scholar
[9]
P. Park, A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Trans. Automatic Control, vol. 44, pp.876-877, (1999).
DOI: 10.1109/9.754838
Google Scholar
[10]
M. Sen, Adaptive control of linear singular time-invariant single-input single-output systems with external point delay, Applied Mathematics and Computation, vol. 203, pp.319-332, (2008).
DOI: 10.1016/j.amc.2008.04.039
Google Scholar
[11]
H. Wang, A. Xue, and R. Lu, Absolute stability criteria for a class of nonlinear singular systems with time delay, Nonlinear Analysis: Theory, Methods and Applications, vol. 70, pp.621-630, (2009).
DOI: 10.1016/j.na.2007.12.030
Google Scholar
[12]
S. Xu, and J. Lam, Improved delay-dependent stability criteria for time-delay systems, IEEE Trans. Automatic Control, vol. 50, pp.384-387, (2005).
DOI: 10.1109/tac.2005.843873
Google Scholar
[13]
S. Xu, J. Lam, Y. and Zou, An improved characterization of bounded realness for singular delay systems and its applications, International Journal of Robust and Nonlinear Control, vol. 18, pp.263-277, (2007).
DOI: 10.1002/rnc.1215
Google Scholar