Delay-Dependent Stabilization for Singular Time-Delay Systems

Article Preview

Abstract:

Some new results of delay-dependent stabilization for linear singular time-delay systems are presented. And the time delay considered here is assumed to be constant but unknown. By using a new Lyapunov-krasovskii functional which splits the whole delay interval into two subintervals and defines a different energy function on each subinterval, a sufficient delay-dependent condition is obtained for the singular time-delay system to be regular, impulse free and stable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1255-1259

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Boukas and Z. Liu, Delay-dependent stability analysis of singular linear continuous-time system, IEE Proc. Control Theory Appl., vol. 150, pp.325-330, (2003).

DOI: 10.1049/ip-cta:20030635

Google Scholar

[2] E. Fridman, and U. Shaked, H∞ control of linear state-delay descriptor systems: an LMI approach, Linear Algebra and its Appl., vol. 351, pp.271-302, (2002).

DOI: 10.1016/s0024-3795(01)00563-8

Google Scholar

[3] J. Gao, H. Su, and J. Chu, New Delay-Dependent Criteria for Robust Stability of Uncertain Singular Systems, (IFAC'2008): pp.2484-2489, (2008).

DOI: 10.3182/20080706-5-kr-1001.00419

Google Scholar

[4] J. Hale, Functional Differential Equations. New York: Springer-Verlag, (1977).

Google Scholar

[5] X. Ji, H. Su, and J. Chu, An LMI approach to robust stability of uncertain discrete singular time-delay systems, Asian Journal of Control, vol. 8, pp.56-62, (2006).

DOI: 10.1111/j.1934-6093.2006.tb00252.x

Google Scholar

[6] J. Lee, S. Kim, and W. Kwon, Memoryless H∞ controllers for state delayed systems, IEEE Trans. Automatic Control, vol. 39, pp.159-162, (1994).

DOI: 10.1109/9.273356

Google Scholar

[7] X. Meng, J. Lam, B. Du, and H. Gao, A delay-partitioning approach to the stability analysis of discrete-time systems, Automatica, vol. 46, pp.610-614, (2010).

DOI: 10.1016/j.automatica.2009.12.004

Google Scholar

[8] Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Control, vol. 74, pp.1447-1455, (2001).

DOI: 10.1080/00207170110067116

Google Scholar

[9] P. Park, A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Trans. Automatic Control, vol. 44, pp.876-877, (1999).

DOI: 10.1109/9.754838

Google Scholar

[10] M. Sen, Adaptive control of linear singular time-invariant single-input single-output systems with external point delay, Applied Mathematics and Computation, vol. 203, pp.319-332, (2008).

DOI: 10.1016/j.amc.2008.04.039

Google Scholar

[11] H. Wang, A. Xue, and R. Lu, Absolute stability criteria for a class of nonlinear singular systems with time delay, Nonlinear Analysis: Theory, Methods and Applications, vol. 70, pp.621-630, (2009).

DOI: 10.1016/j.na.2007.12.030

Google Scholar

[12] S. Xu, and J. Lam, Improved delay-dependent stability criteria for time-delay systems, IEEE Trans. Automatic Control, vol. 50, pp.384-387, (2005).

DOI: 10.1109/tac.2005.843873

Google Scholar

[13] S. Xu, J. Lam, Y. and Zou, An improved characterization of bounded realness for singular delay systems and its applications, International Journal of Robust and Nonlinear Control, vol. 18, pp.263-277, (2007).

DOI: 10.1002/rnc.1215

Google Scholar