Adaptive Controller Design for a Class of Discrete Nonlinear Systems

Article Preview

Abstract:

In this paper, we have discussed the adaptive controller problem for a class of nonlinear discrete systems. Firstly, the general nonlinear discrete-time system is transformed into a new form which is more suitable for adaptive controller design. Based on the new model, the observer is proposed to estimate the unavailable states. The adaptive controller is designed to track the desired trajectory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1260-1264

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. S., Ge, C., Yang and T. H., Lee, Adaptive robust control of a class of nonlinear strict-feedback discrete-time systems with unknown control directions, Systems & Control Letters, 57(11), 888-895, (2008).

DOI: 10.1016/j.sysconle.2008.04.006

Google Scholar

[2] J., Kaloust and Z., Qu, Continuous robust control design for nonlinear uncertain systems without a priori knowledge of control direction, IEEE Transactions on Automatic Control, 40(2), 276-282, (1995).

DOI: 10.1109/9.341792

Google Scholar

[3] M., Krstic, I., Kanellakopoulos and P. V., Kokotovic, Nonlinear and adaptive control design, New York: Wiley and Sons, (1995).

Google Scholar

[4] L. J., Chen and K. S., Narendra, Nonlinear adaptive control using neural networks and multiple models, Automatica, 37(8), 1245-1255, (2001).

DOI: 10.1016/s0005-1098(01)00072-3

Google Scholar

[5] R., Marino and P., Tomei, Nonlinear Control Design–Geometric, Adaptive and Robust, London: Prentice Hall, (1995).

Google Scholar

[6] M. M, Polycarpou, Fault accommodation of a class of multivariable nonlinear dynamical systems, IEEE Transaction on Automatic Control, 46, 736-742, (2001).

DOI: 10.1109/9.920792

Google Scholar

[7] I. Izadi, T. W. Chen and Q. Zhao, Norm invariant discretization for sampled-data fault detection, Auto-matica, 41, 1633-1637, (2005).

DOI: 10.1016/j.automatica.2005.03.028

Google Scholar

[8] R. Marino and P. Tomei, Robust adaptive state-feedback tracking for nonlinear systems, IEEE Trans. Automat. Contr., 43(1), 84-89, (1998).

DOI: 10.1109/9.654892

Google Scholar

[9] A. Morse, Global stability of parameter adaptive control systems, IEEE Trans. Automat. Contr., 25, 433-439, (1980).

DOI: 10.1109/tac.1980.1102364

Google Scholar

[10] K. Narendra, Y. Lin, and L. Valavani, Stable adaptive controller design- Part II: Proof of stability, IEEE Trans. Automat. Contr., 25, 440-448, (1980).

DOI: 10.1109/tac.1980.1102362

Google Scholar

[11] S. J., Liu, J. F., Zhang and Z. P., Jiang, Decentralized adaptive output feedback stabilization for large-scale stochastic nonlinear systems, Automatica, 43, 238-251, (2007).

DOI: 10.1016/j.automatica.2006.08.028

Google Scholar

[12] C., Califano, S., Monacoa and D., Normand-Cyrot, On the observer design in discrete-time, System & Control letters, 49, 255-265, (2003).

DOI: 10.1016/s0167-6911(02)00344-4

Google Scholar

[13] H. K., Khalil, Nonlinear Systems, 3rd edition, Upper Saddle River, NJ: Prentice-Hall, (2002).

Google Scholar

[14] H., Shim, Y. I., Son and J. H., Seo, Semi-global observer for multi-output nonlinear systems, Systems & control letters, 42(3), 233-244, (2001).

DOI: 10.1016/s0167-6911(00)00098-0

Google Scholar

[15] K. Busawon, M. Saif and J. De. Leon-Morales, Estimation and control of a class of Euler discretized nonlinear systems, Proc. of the 1999 American Control Conference, San Diego, Califomia, USA, 3579-3583, (1999).

DOI: 10.1109/acc.1999.782433

Google Scholar

[16] S. Lee and M. Park, State observer for MIMO nonlinear systems, IEE Proceedings: Control Theory and Applications, 150(4), 421-426, (2003).

DOI: 10.1049/ip-cta:20030513

Google Scholar