[1]
Isaac. C, Detecting and tracking moving objects for video surveillance, (IEEE proc. Computer Vision and Pattern Recognitiong. 1999).
Google Scholar
[2]
John.P. K, Hyperspectral Imaging System Modeling. Lincoln laboratory journal, vol. 14, (2003).
Google Scholar
[3]
Dalton Rosario, Hyperspectral object tracking using small sample size, SPIE Conference Series, Vol. SPIE-7695, (2010).
Google Scholar
[4]
Amit Banerjee, Hyperspectral video for illumination-invariant tracking. Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, (2009).
DOI: 10.1109/whispers.2009.5289103
Google Scholar
[5]
John Kereks, Vehicle tracking with multi-temporal hyperspectral imagery, Proceedings of SPIE. Vol. SPIE-6233, pp.124-135. (2006).
Google Scholar
[6]
Louisa Varsano, Temporal target tracking in hyperspectral images. Optical Engineering 45_12_126201_December (2006).
DOI: 10.1117/1.2402139
Google Scholar
[7]
Neil A. Soliman, Spectral Gating in Hyperspectral-Augmented Target Tracking. Vol. 6969 696907-5 (2008).
Google Scholar
[8]
T. Wang, Bio-Inspired Adaptive Hyperspectral Imaging for real-Time Target Tracking , IEEE Sensors Journal(2009).
Google Scholar
[9]
Jonathan G. Neumann, DMD based hyperspectral augmentation for multi-object tracking systems. Proceedings of SPIE. Vol. SPIE-7210(2009).
DOI: 10.1117/12.811551
Google Scholar
[10]
Andrew C. Rice, Persistent hyperspectral adaptive multi-modal feature-aided tracking. SPIE Vol. 7334 (2009).
Google Scholar
[11]
BALN A. Automatic target tracking in FLIR image sequences[J]. Automatic Target Recognition XIV, Proc SPIE( 2004).
DOI: 10.1117/12.542295
Google Scholar
[12]
PENG N S. Automatic selection of Kernel-bandwidth for Mean shift tracking algorithm[J]. Opt. Precision Eng., (2008)(in Chinese).
Google Scholar
[13]
K. Fukunaga, The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, pp.32-40 (1975).
DOI: 10.1109/tit.1975.1055330
Google Scholar
[14]
R.T. Collins, Meanshift blob tracking through scale space. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.234-240 (2003).
DOI: 10.1109/cvpr.2003.1211475
Google Scholar