[1]
Zentech International Limited (2008) http: /www. zentech. co. uk/zencrack. htm. ZENCRACK.
Google Scholar
[2]
A.R. Maligno, S. Rajaratnam. A three-dimensional numerical study of fatigue crack growth using remeshing technique. Engineering Fracture Mechanics 77(2010): 94-111.
DOI: 10.1016/j.engfracmech.2009.09.017
Google Scholar
[3]
Babuska I, Melenk JM(1997) The partition of unity finite element method. Int J Numer Methods Eng 40: 727-758.
DOI: 10.21236/ada301760
Google Scholar
[4]
Duarte CA, Hamzeh ON, Liszka TJ(2001). A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190(15–17): 2227–2262. http: /dx. doi. org/10. 1016/S0045-7825(00)00233-4.
DOI: 10.1016/s0045-7825(00)00233-4
Google Scholar
[5]
Duarte CA, Reno LG, Simone A (2007) A high-order generalized FEM for through-the-thickness branched cracks. Int J NumerMethods Eng 72(3): 325–351. http: /dx. doi. org/10. 1002/nme. (2012).
DOI: 10.1002/nme.2012
Google Scholar
[6]
Kim D-J, Duarte CA, Pereira JP (2008) Analysis of interacting cracks using the generalized finite element method with globallocal enrichment functions. J Appl Mech 75(5): 051107.
DOI: 10.1115/1.2936240
Google Scholar
[7]
Kim D-J, Pereira JP, Duarte CA (2009) Analysis of three dimensional fracture mechanics problems: a two-scale approach using coarse generalized FEM meshes. Int J Numer Methods Eng 81(3): 335–365. http: /dx. doi. org/10. 1002/nme. 2690.
DOI: 10.1002/nme.2690
Google Scholar
[8]
Pereira JP, Duarte CA, Jiao X, Guoy D (2009) Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems. Comput Mech 44(1): 73–92. http: /dx. doi. org/10. 1007/s00466-008-0356-1.
DOI: 10.1007/s00466-008-0356-1
Google Scholar
[9]
J. P. Pereira , C. A. Duarte , X. Jiao. Three dimensional crack growth with hp-generalized finite element and face offsetting methods. Comput Mech (2010) 46: 431–453.
DOI: 10.1007/s00466-010-0491-3
Google Scholar
[10]
Qinglin Duan, Jeong-Hoon Song, Thomas Menouillard and Ted Belytschko Element-local level set method for three-dimensional dynamic crack growth. Int J Numer Meth Engng 2009; 80: 1520–1543.
DOI: 10.1002/nme.2665
Google Scholar
[11]
Sukumar N, Moes N, Moran N, et al. Extended finite element method for three dimentional crack modeling. International Journal for Numerical Methods in Engineering, 2000, 48; 1549-1570.
DOI: 10.1002/1097-0207(20000820)48:11<1549::aid-nme955>3.0.co;2-a
Google Scholar
[12]
SchöllmannM, Richard HA, Kullmer G, FullandM (2002) A new criterion for the prediction of crack development in multiaxially loaded structures. Int J Fract 117: 129–141.
Google Scholar
[13]
Sih GC, Cha BCK (1974) A fracture criterion for three-dimensional crack problems. Eng Fract Mech 6: 699–723.
DOI: 10.1016/0013-7944(74)90068-x
Google Scholar
[14]
Paris A, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85: 528–534.
DOI: 10.1115/1.3656902
Google Scholar
[15]
Zi-qiang WANG, Shao-hua CHEN. Advanced Fracture Mechanics. BeiJing: Science Publication, 2009; 120~125, 88~108.
Google Scholar
[16]
De XIE, Qing QIAN, Chang-An LI. The Numerical Compute Method In Fracture Mechanics. BeiJing: Science Publication, 2009; 69~80.
Google Scholar
[17]
The 807th Institute. Nonmetallic Material Handbook, 1985; 2-40~45.
Google Scholar