[1]
W.L. CAI,S.C. CHEN, D.Q. ZHANG. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition, 2007, 40(3): 825~838.
DOI: 10.1016/j.patcog.2006.07.011
Google Scholar
[2]
P. Vasuda ,S. Satheesh. Improved Fuzzy C-Means Algorithm for MR Brain Image Segmentation, 2010, 2(5): 1713-1715.
Google Scholar
[3]
Anton Bardera, Jaume Rigau, Imma Boada, Miquel Feixas, and MateuSbert, Image Segmentation Using Information BottleneckMethod, Page Number 1601-1612, IEEE Transactions on ImageProcessing, Vol. 18, No. 7, July (2009).
DOI: 10.1109/tip.2009.2017823
Google Scholar
[4]
J. Jaya and K. Thanushkodi, Segmentation of MR Brain tumor using Parallel ACO, International Journal of Computer and Network Security, 2 (6): 150-153, (2010).
Google Scholar
[5]
Zou Weigang, Sun Guoping. A new digital image information hiding method based on singular value decomposition[J]. Journal of Jiangxi University of Science and Technology, Vol 29(5), p.90~92, (2008).
Google Scholar
[6]
Yang Ping Xian,SunXingBo. Improving method of image smoothing based on rough set,Telecommunications Technology ,2003(3),105-107.
Google Scholar
[7]
L. SZILAGYI,Z. BENYO,S.M. SZILGYII,H.S. ADAM,MR Brain Image Segmentation Using an Enhanced Fuzzy C-Means Algorithm,Proceedings of the 25th Annual International Conference of the IEEE EMBS, 2003, 1: 17~21.
DOI: 10.1109/iembs.2003.1279866
Google Scholar