[1]
L. Pecora and T. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett., 64: (1990) 821–824, 1990.
DOI: 10.1103/physrevlett.64.821
Google Scholar
[2]
S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, et al, The synchronization of chaotic systems. Phys. Rep., 366: 1–101, 2002.
DOI: 10.1016/s0370-1573(02)00137-0
Google Scholar
[3]
J. Ojalvo and R. Roy, Spatiotemporal communication with synchronized optical chaos. Phys. Rev. Lett., 86: 5204–5207, 2001.
DOI: 10.1103/physrevlett.86.5204
Google Scholar
[4]
K. Murali and M. Lakshmanan, Drive-response scenario of chaos synchronization in identical nonlinear systems. Phys. Rev. E, 49: 4882–4887, 1994.
DOI: 10.1103/physreve.49.4882
Google Scholar
[5]
J. Heagl, T. Carroll and L. Pecora, Desynchronization by periodic orbits. Phys. Rev. E, 52: R1253–1256, 1995. .
DOI: 10.1103/physreve.52.r1253
Google Scholar
[6]
D. Huang and R. Guo, Identifying parameter by identical synchronization between different systems. Chaos, 14: 152–159, 2004.
DOI: 10.1063/1.1635095
Google Scholar
[7]
R. Guo, A simple adaptive controller for chaos and hyperchaos synchronization. Phys. Lett. A, 372: 5593–5597, 2008.
DOI: 10.1016/j.physleta.2008.07.016
Google Scholar
[8]
R. Guo, D. Huang and L. Zhang, Chaotic synchronization based on Lie derivative method. Chaos, Solitons & Frac., 25: 1255–1259, 2005.
DOI: 10.1016/j.chaos.2004.11.067
Google Scholar
[9]
W. Lin, Adaptive chaos control and synchronization in only locally Lipschitz systems. Phys. Lett. A, 372: 3195–3200, 2008.
DOI: 10.1016/j.physleta.2008.01.038
Google Scholar
[10]
W. Yu, Stabilization of three-dimensional chaotic systems via single state feedback controller. Phys. Lett. A, 374: 1488–1492, 2010.
DOI: 10.1016/j.physleta.2010.01.048
Google Scholar
[11]
K. Ito, Chaos in the Rikitake two-disc dynamo system. Earth Planet. Sci. Lett., 51: 451-456, 1980.
DOI: 10.1016/0012-821x(80)90224-1
Google Scholar