[1]
Longqiao Gao. BeO ceramic[M]. Beijing: Metallurgical Industry Press, 2006: pp.9-19. (in Chinese).
Google Scholar
[2]
M. Sommer, A. Jahn, and J. Henniger. Beryllium oxide as optically stimulated luminescence dosimeter[J]. Radiation Measurements, 2008, 43(2-6): pp.353-356.
DOI: 10.1016/j.radmeas.2007.11.018
Google Scholar
[3]
M. Sommer, R. Freudenberg, and J. Henniger. New aspects of a BeO-based optically stimulated luminescence dosimeter[J]. Radiation Measurements, 2007, 42(4-5): pp.617-620.
DOI: 10.1016/j.radmeas.2007.01.052
Google Scholar
[4]
M. Sommer, and J. Henniger. Investigation of a BeO-based optically stimulation luminescence dosimeter[J]. Radiat Prot Dosimetry, 2006, 119(1-4): pp.394-397.
DOI: 10.1093/rpd/nci626
Google Scholar
[5]
Scarpa G. The dosimetric use of beryllium oxide as a thermoluminescent material: a preliminary study[J]. Physics in Medicine and Biology, 1970, 15(4): pp.667-672.
DOI: 10.1088/0031-9155/15/4/006
Google Scholar
[6]
M. A. Janney, and O. O. Omatete. Method for molding ceramic powders using a water-based gelcasting process[P]. U.S. Patent 5145908, (1992).
Google Scholar
[7]
O. O. Omatete, M. A. Janney, and S. D. Nunn. Gelcasting: from laboratory development toward industrial production[J]. Journal of the American Ceramic Society, 1997, 17: pp.407-413.
DOI: 10.1016/s0955-2219(96)00147-1
Google Scholar
[8]
A. C. Young, O. O. Omatete, M. A. Janney, and P. A. Menchhofer. Gelcasting of alumina[J]. Journal of the American Ceramic Society, 1991, 74(3): p.612–618.
DOI: 10.1111/j.1151-2916.1991.tb04068.x
Google Scholar
[9]
E. Adolfsson. Gelcasting of zirconia using agarose[J]. Journal of the American Ceramic Society, 2006, 89(6): p.1897-(1902).
DOI: 10.1111/j.1551-2916.2006.01040.x
Google Scholar
[10]
Xiu Wang, Zhipeng Xie, Yong Huang, and Yibing Cheng. Gelcasting of silicon carbide based on gelation of sodium alginate[J]. Ceramics International, 2002, 28(8): pp.865-871.
DOI: 10.1016/s0272-8842(02)00066-4
Google Scholar
[11]
Dong Guo, Kai Cai, Longtu Li, Cewen Nan, and Zhilun Gui. Gelcasting of PZT[J]. Ceramics International, 2003, 29(4): pp.403-406.
DOI: 10.1016/s0272-8842(02)00151-7
Google Scholar
[12]
Biqin Chen, Zhaoquan Zhang, Jingxian Zhang, Manjiang Dong, and Dongliang Jiang. Aqueous gel-casting of hydroxyapatite[J]. Materials Science and Engineering A, 2006, 435: pp.198-203.
DOI: 10.1016/j.msea.2006.07.028
Google Scholar
[13]
Cesarano III, I. A. Aksay, and A. Bleier. Stability of aqueous α-Al2O3 suspensions with poly(methacrylic acid) polyelectrolyte[J]. Journal of the American Ceramic Society, 1988, 71(4): pp.250-255.
DOI: 10.1111/j.1151-2916.1988.tb05855.x
Google Scholar
[14]
Hiroaki Masuda, Ko Higashitani, and Hideto Yoshida. Powder technology handbook[M]. Boca Raton: CRC press, Taylor & Francis Group, 2006: pp.72-74.
Google Scholar
[15]
R. Greenwood. Review of the measurement of Zeta potentials in concentrated aqueous suspensions using electroacoustics[J]. Advances in Colloid and Interface Science, 2003, 106(1-3): pp.55-81.
DOI: 10.1016/s0001-8686(03)00105-2
Google Scholar
[16]
Wenjea J. Tseng, and Kuang-Chih Lin. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions[J]. Materials Science and Engineering A, 2003, 355 (1-2): pp.186-192.
DOI: 10.1016/s0921-5093(03)00063-7
Google Scholar
[17]
Yuanling Song, Xiaolin Liu, and Jianfeng Chen. The maximum solid loading and viscosity estimation of ultra-fine BaTiO3 aqueous suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 247(1-3): pp.27-34.
DOI: 10.1016/j.colsurfa.2004.08.018
Google Scholar
[18]
J. Davies, and J. G. P. Binner. The role of ammonium polyacrylate in dispersing concentrated alumina suspensions. Journal of the European Ceramic Society[J], 2000, 20(10): pp.1539-1553.
DOI: 10.1016/s0955-2219(00)00012-1
Google Scholar
[19]
Lian Gao, Jing Sun, and Yangqiao Liu. Modification and dispersion of nanometer powders[M]. Beijing: Chemical Industry Press, 2003: pp.59-62. (in Chinese).
Google Scholar