Gelcasting of BeO

Article Preview

Abstract:

Aqueous gel-casting of beryllia using polyelectrolyte NH4PAA as a dispersant has been investigated. The effects of the dispersant amount, pH values on the surface properties of BeO powders in aqueous solvent were studied and high solids loading BeO suspension (45 vol.%) was developed. A premix solution containing 15-20 wt.% of AM monomer can provide enough mechanical strength for the green body obtained from 45 vol.% BeO suspension. SEM photography indicates that BeO ceramics with homogeneous microstructure can be fabricated. The thermal conductivity of sintered green body is 182.1±10 W/(m.K). Gelcasting is a suitable process to form BeO ceramic parts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

992-1000

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Longqiao Gao. BeO ceramic[M]. Beijing: Metallurgical Industry Press, 2006: pp.9-19. (in Chinese).

Google Scholar

[2] M. Sommer, A. Jahn, and J. Henniger. Beryllium oxide as optically stimulated luminescence dosimeter[J]. Radiation Measurements, 2008, 43(2-6): pp.353-356.

DOI: 10.1016/j.radmeas.2007.11.018

Google Scholar

[3] M. Sommer, R. Freudenberg, and J. Henniger. New aspects of a BeO-based optically stimulated luminescence dosimeter[J]. Radiation Measurements, 2007, 42(4-5): pp.617-620.

DOI: 10.1016/j.radmeas.2007.01.052

Google Scholar

[4] M. Sommer, and J. Henniger. Investigation of a BeO-based optically stimulation luminescence dosimeter[J]. Radiat Prot Dosimetry, 2006, 119(1-4): pp.394-397.

DOI: 10.1093/rpd/nci626

Google Scholar

[5] Scarpa G. The dosimetric use of beryllium oxide as a thermoluminescent material: a preliminary study[J]. Physics in Medicine and Biology, 1970, 15(4): pp.667-672.

DOI: 10.1088/0031-9155/15/4/006

Google Scholar

[6] M. A. Janney, and O. O. Omatete. Method for molding ceramic powders using a water-based gelcasting process[P]. U.S. Patent 5145908, (1992).

Google Scholar

[7] O. O. Omatete, M. A. Janney, and S. D. Nunn. Gelcasting: from laboratory development toward industrial production[J]. Journal of the American Ceramic Society, 1997, 17: pp.407-413.

DOI: 10.1016/s0955-2219(96)00147-1

Google Scholar

[8] A. C. Young, O. O. Omatete, M. A. Janney, and P. A. Menchhofer. Gelcasting of alumina[J]. Journal of the American Ceramic Society, 1991, 74(3): p.612–618.

DOI: 10.1111/j.1151-2916.1991.tb04068.x

Google Scholar

[9] E. Adolfsson. Gelcasting of zirconia using agarose[J]. Journal of the American Ceramic Society, 2006, 89(6): p.1897-(1902).

DOI: 10.1111/j.1551-2916.2006.01040.x

Google Scholar

[10] Xiu Wang, Zhipeng Xie, Yong Huang, and Yibing Cheng. Gelcasting of silicon carbide based on gelation of sodium alginate[J]. Ceramics International, 2002, 28(8): pp.865-871.

DOI: 10.1016/s0272-8842(02)00066-4

Google Scholar

[11] Dong Guo, Kai Cai, Longtu Li, Cewen Nan, and Zhilun Gui. Gelcasting of PZT[J]. Ceramics International, 2003, 29(4): pp.403-406.

DOI: 10.1016/s0272-8842(02)00151-7

Google Scholar

[12] Biqin Chen, Zhaoquan Zhang, Jingxian Zhang, Manjiang Dong, and Dongliang Jiang. Aqueous gel-casting of hydroxyapatite[J]. Materials Science and Engineering A, 2006, 435: pp.198-203.

DOI: 10.1016/j.msea.2006.07.028

Google Scholar

[13] Cesarano III, I. A. Aksay, and A. Bleier. Stability of aqueous α-Al2O3 suspensions with poly(methacrylic acid) polyelectrolyte[J]. Journal of the American Ceramic Society, 1988, 71(4): pp.250-255.

DOI: 10.1111/j.1151-2916.1988.tb05855.x

Google Scholar

[14] Hiroaki Masuda, Ko Higashitani, and Hideto Yoshida. Powder technology handbook[M]. Boca Raton: CRC press, Taylor & Francis Group, 2006: pp.72-74.

Google Scholar

[15] R. Greenwood. Review of the measurement of Zeta potentials in concentrated aqueous suspensions using electroacoustics[J]. Advances in Colloid and Interface Science, 2003, 106(1-3): pp.55-81.

DOI: 10.1016/s0001-8686(03)00105-2

Google Scholar

[16] Wenjea J. Tseng, and Kuang-Chih Lin. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions[J]. Materials Science and Engineering A, 2003, 355 (1-2): pp.186-192.

DOI: 10.1016/s0921-5093(03)00063-7

Google Scholar

[17] Yuanling Song, Xiaolin Liu, and Jianfeng Chen. The maximum solid loading and viscosity estimation of ultra-fine BaTiO3 aqueous suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 247(1-3): pp.27-34.

DOI: 10.1016/j.colsurfa.2004.08.018

Google Scholar

[18] J. Davies, and J. G. P. Binner. The role of ammonium polyacrylate in dispersing concentrated alumina suspensions. Journal of the European Ceramic Society[J], 2000, 20(10): pp.1539-1553.

DOI: 10.1016/s0955-2219(00)00012-1

Google Scholar

[19] Lian Gao, Jing Sun, and Yangqiao Liu. Modification and dispersion of nanometer powders[M]. Beijing: Chemical Industry Press, 2003: pp.59-62. (in Chinese).

Google Scholar