Finite-Time Chaos Control and Synchronization of the New Chaotic System with Unknown Parameters

Article Preview

Abstract:

In this paper, a new chaotic system is discussed. Some basic dynamical properties are studied , and we also deal with the finite-time chaos control and synchronization of the new chaotic system. Based on the finite-time stability theory, the control law are proposed to drive chaos to equilibria within finite time, and the control law and the parameter update law are proposed to realize finite-time synchronization of the new chaotic system under unknown parameters. The controller is simple and robust to noise. Numerical simulations are given to show the effectiveness of the proposed controllers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-121

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1900)821–4.

Google Scholar

[2] Mohammad Haeri, Amir Abbas Emadzadeh. Synchronizing different chaotic systems using active sliding mode control. Chaos Solitons Fractals 31(2007)119-29.

DOI: 10.1016/j.chaos.2005.09.037

Google Scholar

[3] Chen HH, Lee CI and Yang PH. Adaptive synchronization of linearly coupled unified chaotic systems. Chaos Solitons Fractals 40(2009)589-606.

DOI: 10.1016/j.chaos.2007.08.005

Google Scholar

[4] Mahboobi SH, Shahrokhi M and Pishkenari H. N, Observer-based control design for three well-known chaotic systems, Chaos Solitons Fractals 29(2006)381-92.

DOI: 10.1016/j.chaos.2005.08.042

Google Scholar

[5] Peng CC, Chen CL, Robust chaotic control of Lorenz system by backstepping design, Chaos Solitons Fractals 37 (2008)598-608.

DOI: 10.1016/j.chaos.2006.09.057

Google Scholar

[6] Xu. Y, Zhou. W, Fang. J, Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lü chaotic system, Chaos Solitons Fractals 42 (2009) 1305-1315.

DOI: 10.1016/j.chaos.2009.03.023

Google Scholar

[7] Chen YS, Chang CC. Impulsive synchronization of Lipschitz chaotic systems. Chaos Solitons Fractals 40(2009)1221-8.

DOI: 10.1016/j.chaos.2007.08.084

Google Scholar

[8] Wang H, Han ZZ, Xie QY, Zhang. Finite-time chaos synchronization of unified chaotic system with uncertain parameters, Commun Nonlinear Sci Numer Simulat 14 (2009)2239-47.

DOI: 10.1016/j.cnsns.2008.04.015

Google Scholar

[9] Feng Y, Sun L, Yu X. Finite time synchronization of chaotic systems with unmatched uncertainties. In: The 30th annual conference of the IEEE industrial electronics society, BusanKorea; (2004).

DOI: 10.1109/iecon.2004.1432272

Google Scholar

[10] Gilles Millerioux, Christian Mira. Finite-time global chaos synchronization for piecewise linear maps. IEEE Trans Circuits Syst I 48(2001)111–6.

DOI: 10.1109/81.903194

Google Scholar

[11] Hong Y, Yang G. Global finite-time stabilization: from state feedback to output feedback. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia; (2000).

DOI: 10.1109/cdc.2000.914254

Google Scholar

[12] Guo RW. A simple adaptive controller for chaos and hyperchaos synchronization. Phys. Lett. A 372 (2008) 5593-7.

DOI: 10.1016/j.physleta.2008.07.016

Google Scholar