Research on Properties Improvement of Composite Aluminum Alloy Foil Based on Cold-Rolling Cladding

Article Preview

Abstract:

The cold-rolling cladding process of composite aluminum alloy foil for automobile heat exchanger was investigated, as well as the effects of percentage reduction of first pass, clad sheet thickness and final annealing schedule on the microstructure and properties of the foil. The results showed that bonding the clad sheets A4045 to the core material A3003 on both sides succeeds initially when the percentage reduction is 30%~50% of first pass during cold rolling, and the thickness of both the clad sheets of the composite foil are basically the same. The best sagging resistance is available when the percentage reduction of final pass is 25%~35%. The annealing temperature should be controlled in the range from 320 to 400°C before finish rolling, and the annealing time should control within 80 minutes when annealed at 400°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-166

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hayashi H. Trend of weight reduction of automobile and expectation for aluminum alloys as light weight materials[J]. Journal of Japan Institute of Light Metals, 2005, 55(8):371-376.

DOI: 10.2464/jilm.55.371

Google Scholar

[2] Armao F G. Design and fabrication of aluminum automobiles[J]. Welding Innovation, 2002, 19(2):2-6.

Google Scholar

[3] Koch H, Franke R. Ductile aluminum high-pressure die casting alloys for automotive applications[J]. Light Metal Age, 2004, 62(8):6-11.

Google Scholar

[4] Lee S, Kim M S, Jung D S. Fabrication and sagging behavior of three-layer Al-Si/Al-Mn-Zn/Al-Si clad sheets for automotive heat exchanger[J]. Materials Science Forum, 2003, 439(4):221-226.

DOI: 10.4028/www.scientific.net/msf.439.221

Google Scholar

[5] Kwon Y N, Lee Y S, Lee J H. Deformation behavior of Al-Mg-Si alloy at the elevated temperature[J]. Journal of Materials Processing Technology, 2007, 187-188(12):533-536.

DOI: 10.1016/j.jmatprotec.2006.11.207

Google Scholar

[6] Zhang De-fen, Hu Zhuo-chao, Zuo Liang, et al. Recrystallization textures and microstructures of aluminium alloy 3004[J]. Journal of Northeastern University: Natural Science, 2004, 25(9):840-843.

Google Scholar

[7] Ye Y.H., Liu W.P., Dao B, BIM-Based Durability Analysis for RC Structures, IEIT Journal of Adaptive & Dynamic Computing, 2011(4), Oct 2011, pp: 15-24. DOI=10. 5813/www. ieit-web. org/IJADC/20114. 3.

DOI: 10.5813/www.ieit-web.org/ijadc/2011.4.3

Google Scholar

[8] Li G.F., Kong J.Y., Jiang G.Z., Xie L.X., Jiang Z.G., Zhao G., Xu S. Q, Hybrid Intelligent Control of Coke oven, IEIT Journal of Adaptive & Dynamic Computing, 2011(4), Oct 2011, pp: 25-33. DOI=10. 5813/www. ieit-web. org/IJADC/20114. 4.

DOI: 10.5813/www.ieit-web.org/ijadc/2011.4.4

Google Scholar

[9] Liu K. H, The Classification of Microarray Data Using Evolutionary Classifier Ensemble System, IEIT Journal of Adaptive & Dynamic Computing, 2011(4), Oct 2011, pp: 34-39. DOI=10. 5813/www. ieit-web. org/IJADC/20114. 5.

DOI: 10.5813/www.ieit-web.org/ijadc/2011.4.5

Google Scholar

[10] Li Q. S, The Analysis of The Casting Steel Quality Used in Heavy Haul Train Vehicle Components, IEIT Journal of Adaptive & Dynamic Computing, 2011(4), Oct 2011, and pp: 40-47. DOI=10. 5813/www. ieit-web. org/IJADC/20114. 6.

DOI: 10.5813/www.ieit-web.org/ijadc/2011.4.6

Google Scholar