Determination of Parameters in Compound Fill Sphere Model for Haptic Interaction

Article Preview

Abstract:

The compound Fill Sphere Model (cFSM), which is an extension of common Fill Sphere Model, is widely used in real-time haptic interaction with deformable body. Comparing with finite element based model, the simplicity and efficiency are advantages of cFSM. However, determining implicit parameters of cFSM is a difficult task since a vivid deformation should be attained during haptic interaction. In this paper, to improve the simulation precision, parameter matrices of the cFSM are identified through an analytical method for the first time to our best knowledge. After deriving parameter matrices by linearization, the stiffness matrix, damp matrix and mass matrix of the cFSM are obtained by minimizing errors between stiffness matrix of the Finite Element Model (FEM). In order to evaluate the performance of derived parameters, comparative experiment has been conducted between the cFSM and FEM. Additionally, based on the derived parameters, a real-time haptic interactive scenario is constructed to validate the performance of deformation simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-283

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Meier, O. Lopez, C. Monserrat, M. C. Juan and M. Alcañiz. Real-time deformable models for surgery simulation: a survey, Computer Methods and Programs in Biomedicine, vol. 77, 2005, p.183.

DOI: 10.1016/j.cmpb.2004.11.002

Google Scholar

[2] M. Müller, J. Dorsey, L. Mcmillan, R. Jagnow and B. Cutler. Stable real-time deformations, InProc SCA, 2002, pp.49-54.

DOI: 10.1145/545261.545269

Google Scholar

[3] J. Barbic and D. L. James. Real-time subspace integration for st. venant-kirchhoff deformable models, " In SIGGRAPH, 05: ACM SIGGRAPH 2005 Papers, New York, USA, 2005, pp.982-990.

DOI: 10.1145/1186822.1073300

Google Scholar

[4] R. Kikuuwe, H. Tabuchi, and M. Yamamoto. An edge-based computationally efficient formulation of saint venant-kirchhoff tetrahedral finite elements, ACM Trans. Graph., vol. 28(1), 2009, pp.1-13.

DOI: 10.1145/1477926.1477934

Google Scholar

[5] G.R. Joldes,A. Wittek, M. Couton, S.K. Warfield and K. Miller. Real-time prediction of brain shift using nonlinear finite element algorithms, Proceedings of MICCAI 2009, Springer-Verlag, Berlin, Heidelberg, 2009, pp.300-307.

DOI: 10.1007/978-3-642-04271-3_37

Google Scholar

[6] G.R. Joldes, A. Wittek and K. Miller. Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation, Medical Image Analysis, vol. 13, 2009, pp.912-919.

DOI: 10.1016/j.media.2008.12.001

Google Scholar

[7] F. Conti, O. Khatib and C Baur. Interactive rendering of deformable objects based on a filling sphere modeling approach, 2003, pp.14-19.

DOI: 10.1109/robot.2003.1242167

Google Scholar

[8] S. Wang, G. Yang and W. Chou. Soft body compound deformation algorithm with dynamics correction, Computer Engineering, vol. 20, (2011).

Google Scholar

[9] J. Louchet, X. Provot, and D. Crochemore. Evolutionary identification of cloth animation models, Computer Animation and Simulation, 1995, pp.44-54.

DOI: 10.1007/978-3-7091-9435-5_4

Google Scholar

[10] K. S. Bhat, C. D. Twigg, J. K. Hodgins, P. K. Khosla, Z. Popovic, and S.M. Seitz. Estimating cloth simulation parameters from video, Proc. ACM SIGGRAPH/Eurographics Symp on Computer Animation, 2003, pp.37-51.

Google Scholar

[11] G. Bianchi, B. Solenthaler, G. Székely, and M. Harders. Simultaneous topology and stiffness identification for mass-spring models based on FEM reference deformations, Proc. Medical Image Computing and Computer-Assisted Intervention, vol. 2, 2004, pp.293-301.

DOI: 10.1007/978-3-540-30136-3_37

Google Scholar

[12] B. A. Lloyd, G. Szekely, and M. Harders, Identification of spring parameters for deformable object simulation, IEEE Transactions on Visualization and Computer Graphics, vol. 13, 2007, pp.1081-1094.

DOI: 10.1109/tvcg.2007.1055

Google Scholar

[13] Y. Zhong, B. Shirinzadeh, G. Alici, and J. Smith. A cellular neural network methodology for deformable object simulation, IEEE Transactions on Information technology in Biomedicine, vol. 10, 2006, pp.749-762.

DOI: 10.1109/titb.2006.875679

Google Scholar

[14] P. Korbelt and K. Sloti. Modeling of elastic internode bounds in cellular neural network-based implementation of the deformable grid paradigm, International Workshop on Cellular Neural Networks and Their Applications, Istanbul, Turkey, vol. 10, 2006, pp.1-6.

DOI: 10.1109/cnna.2006.341612

Google Scholar

[15] O. Deussen, L. Kobbelt, and P. Tucke. Using simulated annealing to obtain good nodal approximations of deformable objects, Computer Animation and Simulation, 1995, pp.30-43.

DOI: 10.1007/978-3-7091-9435-5_3

Google Scholar

[16] H. Courtecuisse, H. Jung, J. Allard, C. Duriez, D. Y. Lee and S. Cotin. GPU-based real-time soft tissue deformation with cutting and haptic feedback, Progress in Biophysics and Molecular Biology, Vol. 103, 2010, pp.159-168.

DOI: 10.1016/j.pbiomolbio.2010.09.016

Google Scholar

[17] TetGen, http: /tetgen. berlios. de.

Google Scholar