[1]
D. Y. Lin, C. R. Yan, and W. T. Chen, Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system, Comput. Med. Imaging Graph., vol. 29, pp, 447-458, (2005).
DOI: 10.1016/j.compmedimag.2005.04.001
Google Scholar
[2]
I. Sluimer, A. Schilham, M. Prokop, and B. V. Ginneken. Computer analysis of computed tomography scans of the lung: a survey, IEEE Trans. Med. Imag., vol. 25(4), pp.385-405, (2006).
DOI: 10.1109/tmi.2005.862753
Google Scholar
[3]
S. L. A. Lee, A. Z. Kouzani, and E. J. Hu. Automated detection of lung nodules in computed tomography images: a review, Mach. Vision Appl., (2010).
Google Scholar
[4]
J. P. Ko and M. Betke. Chest CT: automated nodule detection and assessment of change over time - preliminary experience, Radiology, vol. 218(1), pp.267-273, (2001).
DOI: 10.1148/radiology.218.1.r01ja39267
Google Scholar
[5]
M. N. Gurcan, B. Sahiner, N. Petrick, H. P. Chan, E. A. Kazerooni, P. N. Cascade, and L. Hadjiiski, Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system, Med. Phys., vol. 29(11), pp.2552-2558, (2002).
DOI: 10.1118/1.1515762
Google Scholar
[6]
K. Suzuki, F. Li, S. Sone, Computer-aided diagnostic scheme for distinction between benign and malignant nodules n thoracic low-dose CT by use of massive training artificial neural network, IEEE Trans. Med. Imag., vol. 24, pp.1138-1150, (2005).
DOI: 10.1109/tmi.2005.852048
Google Scholar
[7]
K. Suzuki, F. Li, Q. Li, Comparison between 2D and 3D massive-training ANNs (MTANNs) in CAD for lung nodule detection on MDCT, Int. J. Comput. Assist. Radiol. Surg., vol. 1, pp.354-355, (2006).
Google Scholar
[8]
X. Zhang, G. McLennan, E. A. Hoffman, and M Sonka, Computerized detection of pulmonary nodules using cellular neural networks in CT images, In: Proceedings of SPIE, vol. 5370, pp.30-41, (2004).
DOI: 10.1117/12.535556
Google Scholar
[9]
C. C. McCulloch, R. A. Kaucic, P. R. Mendonca, D. J. Walter, and R. S. Avila, Model-based detection of lung nodules in computed tomography exams, Acad. Radiol., vol. 11(3), pp.258-266, (2004).
DOI: 10.1016/s1076-6332(03)00729-3
Google Scholar
[10]
L. Boroczky, L. Zhao, K. P. Lee. Feature subset selection for improving the performance of false positive reduction in lung nodule CAD, IEEE Trans. Inf. Technol. Biomed., vol. 10(3), pp.504-511, (2006).
DOI: 10.1109/titb.2006.872063
Google Scholar
[11]
J. Dehmeshki, J. Chen, M. V. Casique, and M. Karakoy, Classification of lung data by sampling and support vector machines, In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp.3194-3197, (2004).
DOI: 10.1109/iembs.2004.1403900
Google Scholar
[12]
M. E. Tipping, The relevance vector machine, In: Advances in Neural Information Processing Systems, vol. 2, S. A. Solla, T. K. Leen, and K. -R. Müller, Eds. MIT Press, Cambridge, MA, (2000).
Google Scholar
[13]
M. E. Tipping, Sparse bayesian learning and the relevance vector machine, J. Mach. Learn. Res., vol. 1, pp.211-244, (2001).
Google Scholar
[14]
C. Silva, B. Ribeiro, Toward expanding relevance vector machines to large scale datasets, Int. J. Neural Syst., vol. 18(1), pp.45-58, (2008).
DOI: 10.1142/s0129065708001361
Google Scholar