[1]
M. MacManus, et al., Use of PET and PET/CT for Radiation Therapy Planning: IAEA expert report 2006–2007, Radiotherapy and Oncology, vol. 91, pp.85-94, (2009).
DOI: 10.1016/j.radonc.2008.11.008
Google Scholar
[2]
D. Thorwarth, et al., Physical radiotherapy treatment planning based on functional PET/CT data, Radiotherapy and Oncology, vol. 96, pp.317-324, (2010).
DOI: 10.1016/j.radonc.2010.07.012
Google Scholar
[3]
G. Lucignani, SUV and segmentation: pressing challenges in tumour assessment and treatment, European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, pp.715-720, (2009).
DOI: 10.1007/s00259-009-1085-1
Google Scholar
[4]
J. -F. Daisne, et al., Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms, Radiotherapy and Oncology, vol. 69, pp.247-250, (2003).
DOI: 10.1016/s0167-8140(03)00270-6
Google Scholar
[5]
C. Ballangan, et al., Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing, 2010, p. 76233O.
DOI: 10.1117/12.844032
Google Scholar
[6]
X. Geets, et al., A gradient-based method for segmenting FDG-PET images: methodology and validation, European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, pp.1427-1438, (2007).
DOI: 10.1007/s00259-006-0363-4
Google Scholar
[7]
M. Azul Gonzalez and V. L. Ballarin, Image segmentation using Watershed Transform: Marker definition based on fuzzy logic, Latin America Transactions, IEEE (Revista IEEE America Latina), vol. 6, pp.223-228, (2008).
DOI: 10.1109/tla.2008.4609921
Google Scholar
[8]
A. S. Dewalle-Vignion, et al., A New Method for Volume Segmentation of PET Images, Based on Possibility Theory, Medical Imaging, IEEE Transactions on, vol. PP, pp.1-1, (2010).
DOI: 10.1109/tmi.2010.2083681
Google Scholar
[9]
A. Kanakatte, et al., Pulmonary Tumor Volume Detection from Positron Emission Tomography Images, pp.213-217, (2008).
Google Scholar
[10]
R. S. Ashamalla H, Parikh K, Mokhtar B, Goswami G, Kambam S, Abdel-Dayem H, Guirguis A, Ross P, Evola A., The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer, Int J Radiat Oncol Biol Phys, vol. 63, p.23.
DOI: 10.1016/j.ijrobp.2005.04.021
Google Scholar
[11]
A. C. Paulino, et al., Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer, International Journal of Radiation Oncology*Biology*Physics, vol. 61, pp.1385-1392, (2005).
DOI: 10.1016/j.ijrobp.2004.08.037
Google Scholar
[12]
H. Chui and A. Rangarajan, A new point matching algorithm for non-rigid registration, Computer Vision and Image Understanding, vol. 89, pp.114-141.
DOI: 10.1016/s1077-3142(03)00009-2
Google Scholar