[1]
O. Pawelski, Arch. Eisenhuttenwes. (1968) 821-827.
Google Scholar
[2]
Wilmotte, S. and Mignon, l. Thermal variations of the camber of the working rolls during hot rolling. Metallurgical Reports CRM, No. 34, March 1973, 17-34.
Google Scholar
[3]
Nakagawa, K., Heat crown of work rolls during aluminum hot rolling. Sumitomo Light Metals Technical Report, 1980, 21(l), 45-51.
Google Scholar
[4]
Khloponin, V. N., Latukhin, E. I., Soskovets, 0. N., Burlakov, S. A. and Kosyreva, M. V., Change in thermal profik of work rolls during hot strip rolling cycle. Steel in the USSR, 1988, 18(2), 78-81.
Google Scholar
[5]
Tseng, A. A., Lin, F. H., Gunderia, A. S. and Ni, D. S., Roll cooling and its relationship to roll life. Metallurgical Transactions A, 1989, 20A, 2305-2320.
DOI: 10.1007/bf02666666
Google Scholar
[6]
Garber, E. A., Goncharskii, A. A. and Qkunev, A. A., Efficient range of strip shape control by thermal profiling of rolls. Steel in the USSR, 1986, 16(7), 332-334.
Google Scholar
[7]
Guo, R. M., Kousha, R. and Schunk, J. H., A semi-analytical solution of work roll thermal crown during hot rolling. In Proc. 35th MWSP Con&, Vol. XXXI, ISS-AIME, 1994, pp.329-339.
Google Scholar
[8]
Tseng, A. A., Tong, S., Maslen, S. H. and Mills, J. J., Thermal behavior of aluminum rolling. ASME J. Heat Transfer, 1990, 112, 301-308.
DOI: 10.1115/1.2910376
Google Scholar
[9]
Baker, J., & Christofides, P. D. (2000). Finite-dimensional approximation and control of nonlinear parabolic PDE systems. International Journal of Control, 73(5), 439-456.
DOI: 10.1080/002071700219614
Google Scholar
[10]
H. M. Park and D. H. Cho. (1996). The use of the Karhunen-Loeve decomposition for the modeling of distributed parameter systems, Chem. Eng. Sci., vol. 51, p.81–98.
Google Scholar