Spectral Based Spatio-Temporal Modeling for Thermal Crown of Aluminium Alloy Hot Rolling Processes

Article Preview

Abstract:

A spectral based low-dimensional spatio-temporal modeling approach is proposed for thermal crown of work rolling in aluminium alloy rolling processes. Firstly,the Karhunen-Loève (KL) decomposition is used for dimension reduction and time/space separation. The neural networks are used for dynamic modeling. The simulations have demonstrated the effectiveness of the proposed spatio-temporal modeling approach..

You might also be interested in these eBooks

Info:

Periodical:

Pages:

696-702

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Pawelski, Arch. Eisenhuttenwes. (1968) 821-827.

Google Scholar

[2] Wilmotte, S. and Mignon, l. Thermal variations of the camber of the working rolls during hot rolling. Metallurgical Reports CRM, No. 34, March 1973, 17-34.

Google Scholar

[3] Nakagawa, K., Heat crown of work rolls during aluminum hot rolling. Sumitomo Light Metals Technical Report, 1980, 21(l), 45-51.

Google Scholar

[4] Khloponin, V. N., Latukhin, E. I., Soskovets, 0. N., Burlakov, S. A. and Kosyreva, M. V., Change in thermal profik of work rolls during hot strip rolling cycle. Steel in the USSR, 1988, 18(2), 78-81.

Google Scholar

[5] Tseng, A. A., Lin, F. H., Gunderia, A. S. and Ni, D. S., Roll cooling and its relationship to roll life. Metallurgical Transactions A, 1989, 20A, 2305-2320.

DOI: 10.1007/bf02666666

Google Scholar

[6] Garber, E. A., Goncharskii, A. A. and Qkunev, A. A., Efficient range of strip shape control by thermal profiling of rolls. Steel in the USSR, 1986, 16(7), 332-334.

Google Scholar

[7] Guo, R. M., Kousha, R. and Schunk, J. H., A semi-analytical solution of work roll thermal crown during hot rolling. In Proc. 35th MWSP Con&, Vol. XXXI, ISS-AIME, 1994, pp.329-339.

Google Scholar

[8] Tseng, A. A., Tong, S., Maslen, S. H. and Mills, J. J., Thermal behavior of aluminum rolling. ASME J. Heat Transfer, 1990, 112, 301-308.

DOI: 10.1115/1.2910376

Google Scholar

[9] Baker, J., & Christofides, P. D. (2000). Finite-dimensional approximation and control of nonlinear parabolic PDE systems. International Journal of Control, 73(5), 439-456.

DOI: 10.1080/002071700219614

Google Scholar

[10] H. M. Park and D. H. Cho. (1996). The use of the Karhunen-Loeve decomposition for the modeling of distributed parameter systems, Chem. Eng. Sci., vol. 51, p.81–98.

Google Scholar