Feature Extraction Using Composite Individual Genetic Programming: An Application to Mass Classification

Article Preview

Abstract:

This paper proposes a novel method for breast cancer diagnosis using the features generated by genetic programming (GP). We developed a new individual combination pattern (Composite individual genetic programming) which regards several individual as one unity to generate more powerful features that can improve the discriminatory performance of a classifier and reducing the input feature dimensionality at the same time. The performance of the proposed method is demonstrated by extensive experiments on MIAS and DDSM mammographic image database.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

468-473

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Cancer Research UK. Breast cancer factsheet; February (2004).

Google Scholar

[2] NationalCancer Institute ofCanada. Canadian cancer statistics 2006; (2006).

Google Scholar

[3] Alfonso Rojas Domínguez, Asoke K, NandiToward breast cancer diagnosis based on automated segmentation ofmasses inmammograms, Pattern Recognition 42 (2009) , 1138-1148.

DOI: 10.1016/j.patcog.2008.08.006

Google Scholar

[4] Encarnacao JL, Peitgen H-O, Sakas G, Englert G. Fractal geometry and computer graphics. Berlin: Springer-Verlag; (1992).

Google Scholar

[5] Caldwell CB, Stapleton SJ, Holdsworth DW, Jong RA, WeiserWJ, Cooke G, et al. Characterization of mammographic parenchymal pattern by fractal dimension. Phys Med Biol, 1990; 35: 235-47.

DOI: 10.1088/0031-9155/35/2/004

Google Scholar

[6] Bruce LM, Adhami RR. Classifying mammographic mass shapes using the wavelet transform modulus-maxima method. IEEE Trans Med Imag 1999; 18(12): 1170-7.

DOI: 10.1109/42.819326

Google Scholar

[7] Homer MJ. Imaging features and management of characteristically benign and probably benign lesions. Radiol Clin N Am 1987; 25(5): 939-51.

DOI: 10.1016/s0033-8389(22)02273-4

Google Scholar

[8] Homer MJ. Breast imaging: pitfalls, controversies and some practical thoughts. Radiol Clin N Am 1985; 23(3): 459-72.

Google Scholar

[9] Mavroforakis M, Georgiou H, Dimitropoulos N, Cavouras D, Theodoridis S. Significance analysis of qualitative mammographic features, using linear classifiers, neural networks and support vector machines. Eur J Radiol 2005; 54: 80-9.

DOI: 10.1016/j.ejrad.2004.12.015

Google Scholar

[10] Z.M. Huo, M.L. Giger, C.J. Vyborny, D.E. Wolverton, R.A. Schmidt,K. Doi, Automatedcomputerized classification of malignant and benign masses on digitized mammograms, Acad. Radiol. 5 (1998)155-168.

DOI: 10.1016/s1076-6332(98)80278-x

Google Scholar

[11] N. Petrick, H.P. Chan, B. Sahiner, M.A. Helvie, Combined adaptiveenhancement and region-growing segmentation of breast masses on digitized mammograms, Med. Phys. 26 (1999) 1642–1654.

DOI: 10.1118/1.598658

Google Scholar

[12] N.M. El-Faramawy, R.M. Rangayyan, J.E.L. Desautels, O.A. Alim, Shape factors for analysis of breast tumors in mammograms, 1996 Canadian Conference on Electrical and Computer Engineering, 1996, p.355–358.

DOI: 10.1109/ccece.1996.548110

Google Scholar

[13] N. Petrick, H.P. Chan, B. Sahiner, M.A. Helvie, Combined adaptive enhancement and region-growing segmentation of breast masses on digitized mammograms, Med. Phys. 26 (1999) 1642–1654.

DOI: 10.1118/1.598658

Google Scholar

[14] B. Sahiner, H.P. Chan, N. Petrick, D. Wei, M.A. Helvie, D.D. Adler M.M. Goodsitt, Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images, IEEE Trans. Med. Imaging 15 (5) (1996).

DOI: 10.1109/42.538937

Google Scholar

[15] B. Sahiner, H.P. Chan, N. Petrick, M.A. Helvie, M.M. Goodsitt, Design of a high-sensitivity classifier based on a genetic algorithm: application to computer-aided diagnosis, Phys. Med. Biol. 43 (10)(1998) 2853–2871.

DOI: 10.1088/0031-9155/43/10/014

Google Scholar

[16] F.F. Yin, M.L. Giger, K. Doi, C.J. Vyborny, R.A. Schmidt, Computerized detection of masses in digital mammograms: investigation of feature-analysis techniques, J. Digital Imaging 7(1994) 18–26.

DOI: 10.1007/bf03168475

Google Scholar

[17] K. Bovis, S. Singh, J. Fieldsend, C. Pinder, Identification of masses in digital mammograms with MLP and RBF nets, in: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks Com, 2000, p.342–347.

DOI: 10.1109/ijcnn.2000.857859

Google Scholar

[18] B. Sahiner, N. Petrick, H.P. Chan, Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization, IEEE Trans. Med. Imaging 20 (12)(2001) 1275–1284.

DOI: 10.1109/42.974922

Google Scholar

[19] B. Sahiner, H.P. Chan, N. Petrick, M.A. Helvie, M.M. Goodsitt, Design of a high-sensitivity classifier based on a genetic algorithm: application to computer-aided diagnosis, Phys. Med. Biol. 43 (10)(1998) 2853–2871.

DOI: 10.1088/0031-9155/43/10/014

Google Scholar

[20] J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, (1992).

Google Scholar

[21] Koza, John R. Genetic Programming . Cambridge, MA: MIT Press, (1992).

Google Scholar

[22] J Suckling et al (1994): The Mammographic Image Analysis Society Digital Mammogram Database Exerpta Medica. International Congress Series 1069 pp.375-378.

Google Scholar

[23] Alfonso Rojas Dom´ ınguez, Asoke K. Nandi, Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection, Computerized Medical Imaging and Graphics 32 (2008) 304–315.

DOI: 10.1016/j.compmedimag.2008.01.006

Google Scholar

[24] Pasquale Delogu, Maria Evelina Fantacci, Parnian Kasae, Alessandra Retico, Characterization of mammographicmasses using a gradient-based segmentation algorithmand a neural classifier, Computers in Biology and Medicine 37 (2007) 1479 – 1491.

DOI: 10.1016/j.compbiomed.2007.01.009

Google Scholar