OONS: An Object Oriented Neuronal Simulator

Article Preview

Abstract:

OONS is a new Object Oriented Neural Simulator. The goal creating it is making the construction of neural model as quickly and easily as possible for the users, and can run in shorter time than other simulators. OONS is written in C++ programming language and using crank-Nicholson implicit integral method to allow for efficient simulations. Because of multi-level package, it is suitable both for beginners and for experts, especially the simulating algorithm researchers. We test OONS by Rallpacks benchmark set, the results show that OONS is higher efficient and more precision.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

917-921

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Delorme, A. and J. Gautrais, et al. (1999). SpikeNET: A simulator for modeling large networks of integrate and fire neurons., Neurocomputing 26 : 989-996.

DOI: 10.1016/s0925-2312(99)00095-8

Google Scholar

[2] Bower, J. M. and D. Beeman, et al. (1998). The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System, Telos.

Google Scholar

[3] Carnevale, N. T. and M. L. Hines (2006). The NEURON book, Cambridge Univ Pr.

Google Scholar

[4] Bhalla, U. S. and D. H. Bilitch, et al. (1992). Rallpacks: a set of benchmarks for neuronal simulators., Trends in neurosciences 15 (11): 453-458.

DOI: 10.1016/0166-2236(92)90009-w

Google Scholar

[5] Brette, R. and M. Rudolph, et al. (2007). Simulation of networks of spiking neurons: A review of tools and strategies., Journal of computational neuroscience 23 (3): 349-398.

Google Scholar

[6] Markram, H. (2006). The blue brain project., Nature Reviews Neuroscience 7 (2): 153-160.

Google Scholar

[7] Davison, A. P. and D. Br, et al. (2008). PyNN: a common interface for neuronal network simulators., Frontiers in neuroinformatics 2.

DOI: 10.3389/neuro.11.011.2008

Google Scholar

[8] Gerstner, W. and W. M. Kistler (2002). Spiking neuron models, Cambridge University Press Cambridge, UK.

Google Scholar

[9] Goodman, D. F. and R. Brette (2009). The Brian simulator., Frontiers in neuroscience 3 (2): 192.

Google Scholar

[10] Izhikevich, E. M. (2004). Simple model of spiking neurons., Neural Networks, IEEE Transactions on 14 (6): 1569-1572.

DOI: 10.1109/tnn.2003.820440

Google Scholar

[11] Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models., Neural Networks 10 (9): 1659-1671.

DOI: 10.1016/s0893-6080(97)00011-7

Google Scholar

[12] Vreeken, J. (2002). Spiking neural networks, an introduction., Institute for Information and Computing Sciences, Utrecht University Technical Report UU-CS-2003-008.

Google Scholar

[13] Brette, R. (2007). Exact simulation of integrate-and-fire models with exponential currents., Neural Computation 19 (10): 2604-2609.

DOI: 10.1162/neco.2007.19.10.2604

Google Scholar

[14] Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances., Neural Computation 18 (8): 2004-(2027).

DOI: 10.1162/neco.2006.18.8.2004

Google Scholar

[15] Pecevski, D. and T. Natschl, et al. (2009). PCSIM: a parallel simulation environment for neural circuits fully integrated with Python., Frontiers in neuroinformatics 3 . (2010). The FACETS Project.

DOI: 10.3389/neuro.11.011.2009

Google Scholar