[1]
M.L. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A 199(1995) 169-172.
DOI: 10.1016/0375-9601(95)00092-h
Google Scholar
[2]
M.L. Wang, Y.B. Zhou, Z.B. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A 216(1996) 67-75.
DOI: 10.1016/0375-9601(96)00283-6
Google Scholar
[3]
E.J. Parkes, B.R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commum. 98(1996) 288-300.
DOI: 10.1016/0010-4655(96)00104-x
Google Scholar
[4]
E.G. Fan, Auto-Baklund transformation and similarity reductions for general variable coefficient KdV equations, Phys. Lett. A 294(2002) 26-30.
DOI: 10.1016/s0375-9601(02)00033-6
Google Scholar
[5]
S.A. Ei-Wakil, New exact travelling wave solutions using modified extended tanh-function method, Chaos Solitons Fractals 31(2001) 840-852.
DOI: 10.1016/j.chaos.2005.10.032
Google Scholar
[6]
Y.T. Gao, B. Tian, Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics, Comput. Phys. Commun. 133(2001) 158-164.
DOI: 10.1016/s0010-4655(00)00168-5
Google Scholar
[7]
Y.D. Shang, H. Huang, W.J. Yuan, The extended hyperbolic functions method and new exact solutions to the Zakharov equations, Appl. Math. Comput. 200(2008) 110-122.
DOI: 10.1016/j.amc.2007.10.059
Google Scholar
[8]
S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289(2001) 69-74.
DOI: 10.1016/s0375-9601(01)00580-1
Google Scholar
[9]
G.T. Liu, T.Y. Fan, New applications of developed Jacobi elliptic function expansion methods, Phys. Lett. A 345(2005) 161-166.
DOI: 10.1016/j.physleta.2005.07.034
Google Scholar
[10]
A. Ebaid, Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method, Phys. Lett. A 365(2007) 213-219.
DOI: 10.1016/j.physleta.2007.01.009
Google Scholar
[11]
Y.B. Zhou, M.L. Wang, Y.M. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients, Phys. Lett. A 308(2003) 31-36.
DOI: 10.1016/s0375-9601(02)01775-9
Google Scholar
[12]
Sirendaoreji, A new auxiliary equation and exact travelling wave solutions of nonlinear equations, Phys. Lett. A 356(2006) 124-130.
DOI: 10.1016/j.physleta.2006.03.034
Google Scholar
[13]
Y.L. Ma, B.Q. Li, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput. 201(2009) 102-107.
DOI: 10.1016/j.amc.2009.01.036
Google Scholar
[14]
M.L. Wang, X.Z. Li, J.L. Zhang, The (G'/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A 372(2008) 417-423.
DOI: 10.1016/j.physleta.2007.07.051
Google Scholar
[15]
M.L. Wang, J.L. Zhang, X.Z. Li, Application of the (G'/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations, Appl. Math. Comput. 206(2008) 321-326.
DOI: 10.1016/j.amc.2008.08.045
Google Scholar
[16]
L.X. Li, M.L. Wang, The (G'/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrodinger equation, Appl. Math. Comput. 208(2009) 440-445.
Google Scholar
[17]
A. Bekir, Application of the (G'/G)-expansion method for nonlinear evolution equations, Phys. Lett. A 372(2008) 3400-3406.
DOI: 10.1016/j.physleta.2008.01.057
Google Scholar
[18]
S. Zhang, J.L. Tong, A generalized (G'/G)-expansion method for the mKdV equation with variable coefficients, Phys. Lett. A 372(2008) 2254-2257.
DOI: 10.1016/j.physleta.2007.11.026
Google Scholar
[19]
S. Zhang, W. Wang, J.L. Tong, A generalized (G'/G)-expansion method and its application to the (2 + 1)-dimensional Broer-Kaup equations, Appl. Math. Comput. 209(2009) 399-404.
DOI: 10.1016/j.amc.2008.12.068
Google Scholar
[20]
E.M.E. Zayed, The (G'/G)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics, J. Appl. Math. Comput. 30(2009) 89-103.
DOI: 10.1007/s12190-008-0159-8
Google Scholar
[21]
Ismail Aslan, Turgut Ozisb. Analytic study on two nonlinear evolution equations by using the (G'/G)-expansion method, Appl. Math. Comput. 209(2009) 425-429.
DOI: 10.1016/j.amc.2008.12.064
Google Scholar
[22]
Ismail Aslan, Turgut Ozisb, On the validity and reliability of the (G'/G)-expansion method by using higher-order nonlinear equations, Appl. Math. Comput. 211(2009) 531-536.
DOI: 10.1016/j.amc.2009.01.075
Google Scholar
[23]
Y.B. Zhou, C. Li, Application of Modified G'/G-Expansion Method to Traveling Wave Solutions for Whitham-Broer-Kaup-Like Equations, Commun. Theor. Phys. (Beijing) 51(2009) 664-670.
DOI: 10.1088/0253-6102/51/4/17
Google Scholar
[24]
B.Q. Li, Y.L. Ma, (G'/G)-expansion method and new exact solutions for (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov system, Acta Phys. Sin. 58(2009) 4373-4378.
DOI: 10.7498/aps.58.4373
Google Scholar
[25]
Y.L. Ma, B.Q. Li, New application of (G'/G)-expansion method for high dimensional nonlinear physical equations, Acta Phys. Sin. 58(2009), in press.
Google Scholar
[26]
B.Q. Li, Y.L. Ma, (G'/G)-expansion method and novel fractal structure for high-dimensional nonlinear physical equation, Acta Phys. Sin. 59(2010), in press.
Google Scholar
[27]
Z.T. Fu, S.K. Liu, S.D. Liu, A new method to construct solutions to nonlinear wave equations. Acta Phys. Sin, 2004, 54(2): 1343-1346.
Google Scholar
[28]
Y.C. Guo. Introduction of Nonlinear Partial Differential Equation. Beijing: Tsinghua University Press, (2008).
Google Scholar