Exact Solutions for Coupled mKdV Equations by a New Symbolic Computation Method

Article Preview

Abstract:

By introducing (G′/G)-expansion method and symbolic computation software MAPLE, two types of new exact solutions are constructed for coupled mKdV equations. The solutions included trigonometric function solutions and hyperbolic function solutions. The procedure is concise and straightforward, and the method is also helpful to find exact solutions for other nonlinear evolution equations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-189

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.L. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A 199(1995) 169-172.

DOI: 10.1016/0375-9601(95)00092-h

Google Scholar

[2] M.L. Wang, Y.B. Zhou, Z.B. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A 216(1996) 67-75.

DOI: 10.1016/0375-9601(96)00283-6

Google Scholar

[3] E.J. Parkes, B.R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commum. 98(1996) 288-300.

DOI: 10.1016/0010-4655(96)00104-x

Google Scholar

[4] E.G. Fan, Auto-Baklund transformation and similarity reductions for general variable coefficient KdV equations, Phys. Lett. A 294(2002) 26-30.

DOI: 10.1016/s0375-9601(02)00033-6

Google Scholar

[5] S.A. Ei-Wakil, New exact travelling wave solutions using modified extended tanh-function method, Chaos Solitons Fractals 31(2001) 840-852.

DOI: 10.1016/j.chaos.2005.10.032

Google Scholar

[6] Y.T. Gao, B. Tian, Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics, Comput. Phys. Commun. 133(2001) 158-164.

DOI: 10.1016/s0010-4655(00)00168-5

Google Scholar

[7] Y.D. Shang, H. Huang, W.J. Yuan, The extended hyperbolic functions method and new exact solutions to the Zakharov equations, Appl. Math. Comput. 200(2008) 110-122.

DOI: 10.1016/j.amc.2007.10.059

Google Scholar

[8] S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289(2001) 69-74.

DOI: 10.1016/s0375-9601(01)00580-1

Google Scholar

[9] G.T. Liu, T.Y. Fan, New applications of developed Jacobi elliptic function expansion methods, Phys. Lett. A 345(2005) 161-166.

DOI: 10.1016/j.physleta.2005.07.034

Google Scholar

[10] A. Ebaid, Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method, Phys. Lett. A 365(2007) 213-219.

DOI: 10.1016/j.physleta.2007.01.009

Google Scholar

[11] Y.B. Zhou, M.L. Wang, Y.M. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients, Phys. Lett. A 308(2003) 31-36.

DOI: 10.1016/s0375-9601(02)01775-9

Google Scholar

[12] Sirendaoreji, A new auxiliary equation and exact travelling wave solutions of nonlinear equations, Phys. Lett. A 356(2006) 124-130.

DOI: 10.1016/j.physleta.2006.03.034

Google Scholar

[13] Y.L. Ma, B.Q. Li, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput. 201(2009) 102-107.

DOI: 10.1016/j.amc.2009.01.036

Google Scholar

[14] M.L. Wang, X.Z. Li, J.L. Zhang, The (G'/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A 372(2008) 417-423.

DOI: 10.1016/j.physleta.2007.07.051

Google Scholar

[15] M.L. Wang, J.L. Zhang, X.Z. Li, Application of the (G'/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations, Appl. Math. Comput. 206(2008) 321-326.

DOI: 10.1016/j.amc.2008.08.045

Google Scholar

[16] L.X. Li, M.L. Wang, The (G'/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrodinger equation, Appl. Math. Comput. 208(2009) 440-445.

Google Scholar

[17] A. Bekir, Application of the (G'/G)-expansion method for nonlinear evolution equations, Phys. Lett. A 372(2008) 3400-3406.

DOI: 10.1016/j.physleta.2008.01.057

Google Scholar

[18] S. Zhang, J.L. Tong, A generalized (G'/G)-expansion method for the mKdV equation with variable coefficients, Phys. Lett. A 372(2008) 2254-2257.

DOI: 10.1016/j.physleta.2007.11.026

Google Scholar

[19] S. Zhang, W. Wang, J.L. Tong, A generalized (G'/G)-expansion method and its application to the (2 + 1)-dimensional Broer-Kaup equations, Appl. Math. Comput. 209(2009) 399-404.

DOI: 10.1016/j.amc.2008.12.068

Google Scholar

[20] E.M.E. Zayed, The (G'/G)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics, J. Appl. Math. Comput. 30(2009) 89-103.

DOI: 10.1007/s12190-008-0159-8

Google Scholar

[21] Ismail Aslan, Turgut Ozisb. Analytic study on two nonlinear evolution equations by using the (G'/G)-expansion method, Appl. Math. Comput. 209(2009) 425-429.

DOI: 10.1016/j.amc.2008.12.064

Google Scholar

[22] Ismail Aslan, Turgut Ozisb, On the validity and reliability of the (G'/G)-expansion method by using higher-order nonlinear equations, Appl. Math. Comput. 211(2009) 531-536.

DOI: 10.1016/j.amc.2009.01.075

Google Scholar

[23] Y.B. Zhou, C. Li, Application of Modified G'/G-Expansion Method to Traveling Wave Solutions for Whitham-Broer-Kaup-Like Equations, Commun. Theor. Phys. (Beijing) 51(2009) 664-670.

DOI: 10.1088/0253-6102/51/4/17

Google Scholar

[24] B.Q. Li, Y.L. Ma, (G'/G)-expansion method and new exact solutions for (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov system, Acta Phys. Sin. 58(2009) 4373-4378.

DOI: 10.7498/aps.58.4373

Google Scholar

[25] Y.L. Ma, B.Q. Li, New application of (G'/G)-expansion method for high dimensional nonlinear physical equations, Acta Phys. Sin. 58(2009), in press.

Google Scholar

[26] B.Q. Li, Y.L. Ma, (G'/G)-expansion method and novel fractal structure for high-dimensional nonlinear physical equation, Acta Phys. Sin. 59(2010), in press.

Google Scholar

[27] Z.T. Fu, S.K. Liu, S.D. Liu, A new method to construct solutions to nonlinear wave equations. Acta Phys. Sin, 2004, 54(2): 1343-1346.

Google Scholar

[28] Y.C. Guo. Introduction of Nonlinear Partial Differential Equation. Beijing: Tsinghua University Press, (2008).

Google Scholar