[1]
L.X. Yan, D.X. Ma: Global optimization of nonconvex nonlinear programs using line-up competition algorithm, Comput. Chem. Eng, Vol. 25 (2001), p.1601.
Google Scholar
[2]
L.X. Yan: Solving Combinatorial Optimization Problems with Line-up Competition Algorithm, Comput. Chem. Eng, Vol. 27 (2003), p.251.
Google Scholar
[3]
L.X. Yan, K. Shen and S.H. Hu: Solving mixed integer nonlinear programming problems with line-up competition algorithm, Comput. Chem. Eng, Vol. 28 (2004), p.2647.
DOI: 10.1016/j.compchemeng.2004.07.027
Google Scholar
[4]
E. Cantú-Paz: A survey of parallel genetic algorithm, Caclulateurs Paralleles, Vol. 10 (1998), p.141.
Google Scholar
[5]
E. Alba, F. Luna, A.J. Nebro, et al.: Parallel heterogeneous genetic algorithms for continuous optimization, Parallel. Comput, Vol. 30 (2004), p.699.
DOI: 10.1016/j.parco.2003.12.011
Google Scholar
[6]
D.J. Ram, T.H. Sreenivas and K.G. Subramaniam: Parallel Simulated Annealing Algorithms, J. Parallel Distrib. Comput, Vol. 37 (1996), p.207.
DOI: 10.1006/jpdc.1996.0121
Google Scholar
[7]
E. Onbasoglu, L. Ozdamar: Parallel Simulated Annealing Algorithms in Global Optimization, J. Global. Optim, Vol. 19 (2001), p.27.
Google Scholar
[8]
J.F. Schutte, J.A. Reinbolt, B.J. Fregly, et al.: Parallel global optimization with particle swarm algorithm, Int. J. Numer. Methods Eng, Vol. 61 (2004), p.2296.
DOI: 10.1002/nme.1149
Google Scholar
[9]
B.I. Koh, A.D. George, R.T. Haftka, et al.: Parallel asynchronous particle swarm optimization, Int. J. Numer. Methods Eng, Vol. 67 (2006), p.578.
DOI: 10.1002/nme.1646
Google Scholar
[10]
Z.G. Wang, Y.S. Wong and M Rahman: Development of a parallel optimization method based on genetic simulated annealing algorithm, Parallel. Comput, Vol. 31 (2005), p.839.
DOI: 10.1016/j.parco.2005.03.006
Google Scholar
[11]
P. Adamidis: Parallel evolutionary algorithms: a review, in: 4th Hellenic-European Conference on Computer Mathematics and Its Applications, Athens, Greece, (1998).
Google Scholar
[12]
B. Liu, L. Wang and Y.H. Jin, et al.: Improved particle swarm optimization combined with chaos, Chaos, Solitons & Fractals, Vol. 25 (2005), p.1261.
DOI: 10.1016/j.chaos.2004.11.095
Google Scholar
[13]
K. E. Parsopoulos, M. N. Vrahatis: Recent Approaches to Global Optimization Problems through Particle Swarm Optimization, Nat. Comput, Vol. 1 (2002), p.235.
Google Scholar
[14]
E. Alba: Parallel evolutionary algorithms can achieve super-linear performance, Inf. Process. Lett, Vol. 82 (2002), p.7.
Google Scholar