On Inversion Algorithms over Optimal Extension Fields Using Lagrange Representation

Article Preview

Abstract:

We present, illustrate and analyze some basic notions of the Lagrange Representation (LR) over finite fields, and elementary theory of Optimal Extension Fields. In combining the Lagrange Representation theory and the Frobenius mapping theorem, we could establish an inversion algorithm in the LR version. Our contribution is of adapting an addition-chain-like method over an Optimal Extension Field to the Lagrange Representation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-282

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Koblitz: Elliptic curve cryptosystems, Mathematics of Computation Vol. 48(1987), p.203.

DOI: 10.1090/s0025-5718-1987-0866109-5

Google Scholar

[2] V. Miller, Use of elliptic curves in cryptography, in: Advances in Cryptology, edited by Springer-Verlag, volume 218 of LNCS, proceeding's of CRYPTO'85 (1986), pp.417-426.

DOI: 10.1007/3-540-39799-x_31

Google Scholar

[3] E. Berlekamp : Bit-serial Reed-Solomon encoder, IEEE Transactions on Inf. Th. IT-28(1982).

Google Scholar

[4] W. Diffie and M. Hellman: New directions in cryptography, in: IEEE Transactions on Information Theory Vol. 24(1976), pp.644-654.

DOI: 10.1109/tit.1976.1055638

Google Scholar

[5] J.L. Massey and J.K. Omura: Computational Method and Apparatus for Finite Field Arithmetic, U.S. Patent 4, 587, 627. (1986).

Google Scholar

[6] J.C. Bajard and C. Nègre: Arithmetic Operations in Finite Fields of Medium Prime Characteristic Using the Lagrange Representation, IEEE Transaction on Computers Vol. 55-9 (2006), p.1167.

DOI: 10.1109/tc.2006.136

Google Scholar

[7] D. Bailey and C. Paar: Efficient Arithmetic in Finite Field Extensions with Applications in Elliptic Curve Cryptography, J. Cryptology Vol. 14-3(2001), pp.153-176.

DOI: 10.1007/s001450010012

Google Scholar

[8] D. Hankerson, A. Menezes and S. Vanstone, in: Guide to Elliptic Curve Cryptography, edited by Springer-Verlag (2004).

Google Scholar

[9] J.C. Bajard, L. Imbert, C. Nègre and T. Plantard: Efficient multiplication in ( ) k GF p for elliptic curve cryptography, in: ARITH'16: IEEE Symposium on Computer Arithmetic (June 2003), pp.181-187.

DOI: 10.1109/arith.2003.1207677

Google Scholar

[10] J.C. Bajard, L. Imbert and T. Plantard: Modular number systems: Beyond the Mersenne family, in: SAC'04: 11 th International Workshop on Selected Areas in Cryptography (August 2004), pp.159-169.

DOI: 10.1007/978-3-540-30564-4_11

Google Scholar