[1]
N. Koblitz: Elliptic curve cryptosystems, Mathematics of Computation Vol. 48(1987), p.203.
DOI: 10.1090/s0025-5718-1987-0866109-5
Google Scholar
[2]
V. Miller, Use of elliptic curves in cryptography, in: Advances in Cryptology, edited by Springer-Verlag, volume 218 of LNCS, proceeding's of CRYPTO'85 (1986), pp.417-426.
DOI: 10.1007/3-540-39799-x_31
Google Scholar
[3]
E. Berlekamp : Bit-serial Reed-Solomon encoder, IEEE Transactions on Inf. Th. IT-28(1982).
Google Scholar
[4]
W. Diffie and M. Hellman: New directions in cryptography, in: IEEE Transactions on Information Theory Vol. 24(1976), pp.644-654.
DOI: 10.1109/tit.1976.1055638
Google Scholar
[5]
J.L. Massey and J.K. Omura: Computational Method and Apparatus for Finite Field Arithmetic, U.S. Patent 4, 587, 627. (1986).
Google Scholar
[6]
J.C. Bajard and C. Nègre: Arithmetic Operations in Finite Fields of Medium Prime Characteristic Using the Lagrange Representation, IEEE Transaction on Computers Vol. 55-9 (2006), p.1167.
DOI: 10.1109/tc.2006.136
Google Scholar
[7]
D. Bailey and C. Paar: Efficient Arithmetic in Finite Field Extensions with Applications in Elliptic Curve Cryptography, J. Cryptology Vol. 14-3(2001), pp.153-176.
DOI: 10.1007/s001450010012
Google Scholar
[8]
D. Hankerson, A. Menezes and S. Vanstone, in: Guide to Elliptic Curve Cryptography, edited by Springer-Verlag (2004).
Google Scholar
[9]
J.C. Bajard, L. Imbert, C. Nègre and T. Plantard: Efficient multiplication in ( ) k GF p for elliptic curve cryptography, in: ARITH'16: IEEE Symposium on Computer Arithmetic (June 2003), pp.181-187.
DOI: 10.1109/arith.2003.1207677
Google Scholar
[10]
J.C. Bajard, L. Imbert and T. Plantard: Modular number systems: Beyond the Mersenne family, in: SAC'04: 11 th International Workshop on Selected Areas in Cryptography (August 2004), pp.159-169.
DOI: 10.1007/978-3-540-30564-4_11
Google Scholar