Research on the Secure Multi-Party Computation of some Linear Algebra Problems

Article Preview

Abstract:

Considering constant-round protocols for generating random shared values, for secure multiplication and for addition of shared values, etc are available and can be met by known techniques in all standard models of communication. Protocols are presented allowing the players to securely solve standard computational problems in linear algebra. In particular, securely, efficiently and in constant-round compute determinant of matrices product, rank of a matrix, and determine similarity between matrices. If the basic protocols (addition and multiplication, etc) are unconditionally secure, then so are our protocols. Furthermore our protocols offer more efficient solutions than previous techniques for secure linear algebra.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

265-270

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Goldreich, S. Micali and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority, Proc. ACM STOC '87, 1987: 218-229.

DOI: 10.1145/3335741.3335755

Google Scholar

[2] A. Yao. Protocols for Secure Computation, Proc. IEEE FOCS '82, 1982: 160-164.

Google Scholar

[3] M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation, Proc. ACM STOC '88, 1988: 1-10.

DOI: 10.1145/62212.62213

Google Scholar

[4] D. Chaum, C. Crepeau, I. Damgard. Multi-party unconditionally secure protocols, Proc. ACM STOC '88, 1988: 11-19.

DOI: 10.1145/62212.62214

Google Scholar

[5] J. Bar-Ilan, D. Beaver. Non-cryptographic fault-tolerant computing in constant number of rounds of interaction, Proc. ACM PODC '89, 1989: 201-209.

DOI: 10.1145/72981.72995

Google Scholar

[6] K. Nissim, E. Weinreb. Communication efficient secure linear algebra. In: Halevi, S., Rabin, T. (eds. ) TCC 2006. LNCS, vol 3876. Springer, Heidelberg, 2006: 232-246.

Google Scholar

[7] R. Cramer, I. Damgard. Secure distributed linear algebra in a constant number of rounds. In: J. Kilian, (ed. ) CRYPTO 2001. LNCS, vol 2139, Springer, Heidelberg , 2001: 119-136.

DOI: 10.1007/3-540-44647-8_7

Google Scholar

[8] R. Cramer, E. Kiltz1, and C. Padro. A Note on Secure Computation of the Moore-Penrose Pseudo-inverse and Its Application to Secure Linear Algebra. In: A. Menezes. (ed. ) CRYPTO 2007. LNCS, vol 4622, Springer, Heidelberg, 2007: 613-630.

DOI: 10.1007/978-3-540-74143-5_34

Google Scholar

[9] Y Ishai, E Kushilevitz. Private Simultaneous Messages Protocols with Applications, Proc. 5th Israel Symposium on Theoretical Comp. Sc. (ISTCS '97), 1997: 174-183.

Google Scholar

[10] Y. Ishai, E. Kushilevitz. Randomizing Polynomials: A New Paradigm for Round-Efficient Secure Computation, Proc. of FOCS '00, (2000).

DOI: 10.1109/sfcs.2000.892118

Google Scholar

[11] K. Mulmuley. A Fast Parallel Algorithm to Compute the Rank of a Matrix over an Arbitrary Field, Combinatorica, vol 7, 1987: 110-114.

DOI: 10.1007/bf02579205

Google Scholar

[12] E. Kiltz, P. Mohassel, E. Weinreb, et al. Secure Linear Algebra Using Linearly Recurrent Sequences, TCC 2007, LNCS 4392, 2007: 291-310.

DOI: 10.1007/978-3-540-70936-7_16

Google Scholar

[13] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). 20th STOC, (1988).

DOI: 10.1145/62212.62213

Google Scholar

[14] I. Damgard, M. Fitzi, E. Kiltz, et al. Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation, Proc. 3rd Theory of Cryptography Conference, LNCS 3876, Springer, Heidelberg, 2006: 285-304.

DOI: 10.1007/11681878_15

Google Scholar

[15] I. Damgard, J. Nielsen. Scalable and Unconditionally Secure multiparty computation. In: Menezes, A. (ed. ) CRYPTO 2007. LNCS, vol. 4622, Springer, Heidelberg , (2007).

Google Scholar

[16] M. Hirt, J. Nielsen. Robust multiparty computation with linear communication complexity. In: Dwork, C. (ed. ) CRYPTO 2006. LNCS, vol. 4117, Springer, Heidelberg , 2006, 463-482.

DOI: 10.1007/11818175_28

Google Scholar

[17] B. Zuzana, M. Hirt. Perfectly-Secure MPC with Linear Communication Complexity: In R. Canetti (ed. ): TCC 2008, LNCS 4948, Springer, Heidelberg 2008. 213-230.

Google Scholar