[1]
B. Kaushik, S. Sarkar. Crosstalk analysis for a CMOS-gate-driven coupled interconnects. IEEE Trans. on CAD, vol. 27, no. 6, pp.1150-1154, (2008).
DOI: 10.1109/tcad.2008.923259
Google Scholar
[2]
F. Mbairi, W. Siebert, H. Hesselbom. High-frequency transmission lines crosstalk reduction using spacing rules. IEEE Trans. on Components and Packaging Technologies, vol. 31, no. 3, pp.601-610, (2008).
DOI: 10.1109/tcapt.2008.2001163
Google Scholar
[3]
S. Jaehoon, H. Juhee, Y. Hyunbean, J. Taejin, P. Sungju. Highly compact interconnect test patterns for crosstalk and static faults. IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 56, no. 5, pp.419-423, (2009).
DOI: 10.1109/tcsii.2009.2022373
Google Scholar
[4]
L. Jianxun, W. Jone, S. Das. Crosstalk test pattern generation for dynamic programmable logic arrays. IEEE Trans. on Instrumentation and Measurement, vol. 55, no. 4, pp.1288-1302, (2006).
DOI: 10.1109/tim.2006.877721
Google Scholar
[5]
Aniket, R. Arunachalam. A novel algorithm for testing crosstalk induced delay faults in VLSI circuits. 18th International Conference on VLSI Design, pp.479-484, (2005).
DOI: 10.1109/icvd.2005.125
Google Scholar
[6]
B. Xiaoliang, S. Dey, J. Rajski. Self-test methodology for at-speed test of crosstalk in chip interconnects. 37th Design Automation Conference, pp.619-624, (2000).
DOI: 10.1145/337292.337597
Google Scholar
[7]
W. Assadi, S. Kakarla. A BIST Technique for crosstalk noise detection in FPGAs. IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, pp.167-175, (2008).
DOI: 10.1109/dft.2008.14
Google Scholar
[8]
R. Ebendt, W. Gunther, R. Drechsler. Combining ordered best-first search with branch and bound for exact BDD minimization. IEEE Trans. on CAD, vol. 24, no. 10, pp.1515-1529, (2005).
DOI: 10.1109/tcad.2005.852053
Google Scholar
[9]
G. Fey, R. Drechsler. Minimizing the number of paths in BDDs: theory and algorithm. IEEE Trans. on CAD, vol. 25, no. 1, pp.4-11, (2006).
DOI: 10.1109/tcad.2005.852662
Google Scholar
[10]
O. Keren. Reduction of average path length in binary decision diagrams by spectral methods. IEEE Trans. on Computer, vol. 57, no. 4, pp.520-531, (2008).
DOI: 10.1109/tc.2007.70811
Google Scholar
[11]
J. Butler, T. Sasao, M. Matsuura. Average path length of binary decision diagrams. IEEE Trans. on Computer, vol. 54, no. 9, pp.1041-1053, (2005).
DOI: 10.1109/tc.2005.137
Google Scholar
[12]
R. Ebendt, R. Drechsler. Exact minimisation of path-related objective functions for binary decision diagrams. IEE Proceedings on Computers and Digital Techniques, vol. 153, no. 4, pp.231-242, (2006).
DOI: 10.1049/ip-cdt:20050181
Google Scholar
[13]
H. Babu, T. Sasao. Heuristics to minimize multiple-valued decision diagrams. IEICE Trans. Fundamental, vol. E83A, no. 12, pp.2498-2504, (2000).
Google Scholar
[14]
C. Files, M. Nodine. MDD with added null-value and all-value edges. 38th International Symposium on Multiple-Valued Logic, pp.64-69, (2008).
DOI: 10.1109/ismvl.2008.20
Google Scholar