A Review of Smart Material and Vibration Control for Civil Engineering Structure

Article Preview

Abstract:

Intelligent control for structural vibration is the international research frontiers in vibration control. The intelligent material and intelligent adjustable dampers and smart material actuator has the advantages of simple structure, easy adjustment, small energy consumption, driving the rapid response, almost without delay, in active structural control, semi-active control and passive control, has broad application prospects. The actuator is setted on the structure as a control mechanism, the control mechanism and the structure resist the vibration dynamic loads together, reduce the dynamic response of structure, improve the shock resistance performance of the structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4097-4100

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.P. Cao, S.L. Wang. Journal of Chongqing Jianzhu University. Vol. 23 (2001), pp.108-113 (in Chinese).

Google Scholar

[2] Y.S. Ren. Journal of Taiyuan University of Technology. Vol. 31 (2001), pp.486-493 (in Chinese).

Google Scholar

[3] J.P. Ou, X.C. Guan. Earthquake Engineering and Engineering Vibration. Vol. 18 (1998), pp.21-28 (in Chinese).

Google Scholar

[4] H.J. Busch-Vishniac. Electromechanical Sensors and Actuators (New York: Springer-Verlag 1997).

Google Scholar

[5] J.L. Pons. Emerging Actuator Technologies (New York: Wiley-Interscience 2005).

Google Scholar

[6] A.E. Clark, H.S. Belson. Phys. Rev. B. Vol. 5 (1972), pp.3642-3644.

Google Scholar

[7] M.B. Moffet, A. Clark, M. Wun-Fogle. J. Acoust. Soc. Amer. Vol. 89 (1991), pp.1448-1455.

Google Scholar

[8] E.D. Lacheisserie. Magnetostrictions: Theory and Applications (New York: CRC Press 1993).

Google Scholar

[9] G.P. Carman, M. Mitrovic. J. Intell. Mater. Systems Struct. Vol. 6 (1996), pp.673-683.

Google Scholar

[10] F. Claeyssen, N. Lhermet, R.L. Letty, P. Bouchilloux. J Alloys Compounds. Vol. 258 (1997), pp.61-73.

DOI: 10.1016/s0925-8388(97)00070-4

Google Scholar

[11] Y.P. Wan, D. Fang, K.C. Hwang. Int. J. Non-linear Mech. Vol. 38 (2003), pp.1053-1065.

Google Scholar

[12] R.C. Smith, Seelecke, M. Dapiono, Z. Ounaies. J. Mech. Phys. Solids. Vol. 54 (2003), pp.46-85.

Google Scholar

[13] M.W. Hiller, M.D. Bryant, J. Umegaki. J. Sound Vib. Vol. 134 (1989), pp.507-519.

Google Scholar

[14] M.G. Astion, R.D. Greenough, A.G.I. Jenner, W.J. Metheringham, K. Prajapati. J. Alloys and Compounds. Vol. 258 (1997), pp.97-100.

DOI: 10.1016/s0925-8388(97)00082-0

Google Scholar

[15] E. Engdahl, L. Svensson. J. Appl. Phys. Vol. 63 (1988), pp.3924-3926.

Google Scholar

[16] M. Anjanappa, J. Bi. Smart Mater. Struct. Vol. 3 (1994), pp.83-91.

Google Scholar

[17] A.E. Ackerman, C. Liang, C.A. Rogers. Smart Mater. Struct. Vol. 5 (1996), pp.115-120.

Google Scholar

[18] M.J. Dapino, R.C. Smith, A.B. Flatau. IEEE Trans. Magn. Vol. 36 (2000), pp.545-556.

Google Scholar

[19] Y.P. Wan, Z. Zhong. Inter. J. Mech. Mater. Design. Vol. 1 (2004), pp.95-107.

Google Scholar

[20] K.S. Kannan, A. Dasgupta. Smart Mater. Struct. Vol. 6 (1997), pp.341-350.

Google Scholar

[21] X.C. Shang, M.Y. Jin, X. Han. Computational Mechanics, WCCM VI (Beijing, China 2004).

Google Scholar

[22] J. Kim, E. Jung. Smart Mater. Struct. Vol. 14 (2005), pp.1273-1280.

Google Scholar

[23] J.S. Kumar, N. Ganesan, S. Samamani, C. Padmanabhan. Computers and Structures. Vol. 81 (2003), pp.1375-1382.

Google Scholar

[24] E. Pan, P. Heyliger. J. Sound and Vib. Vol. 253 (2002), pp.429-443.

Google Scholar

[25] J. Chen, H. Chen, E. Pan, P. Heyliger. J. Sound and Vib. Vol. 304 (2007), pp.722-734.

Google Scholar

[26] W. Eerenstein, N.D. Mathur, J.F. Scott. Nature. Vol. 442 (2006), pp.759-765.

Google Scholar

[27] R. Ramesh, N.A. Spaldin. Nature Materials. Vol. 6 (2007), pp.21-29.

Google Scholar