Minimum Quantity Lubrication (MQL) Using Ranque – Hilsch Vortex Tube (RHVT) for Sustainable Machining

Article Preview

Abstract:

Ranque-Hilsch Vortex Tube (RHVT) is a device with no moving parts and do not require electricity or chemicals to function. It has been used widely in cooling and heating of various operations, thermal test, dehumidification, gas liquefaction, ice production and mixture separation. Sustainable machining refers to the efforts to reduce the environmental impact of machining. The use of minimum quantity lubrication (MQL) is an effective solution for a more sustainable machining process. In this paper we propose the use of RHVT in MQL. The structure, working principles and types of RHVT are presented in this paper. Parameters associated with RHVT and the various possible working fluids are discussed in brief.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2012-2015

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Yilmaz, M. Kaya, S. Karagoz and S. Erdogan: A review on design criteria for vortex tubes. Heat Mass Transfer (2009) 45. p.613

DOI: 10.1007/s00231-008-0447-8

Google Scholar

[2] www.exair.com

Google Scholar

[3] B. Yalcin, A.E. Ozgur and M. Koru: The effect of various cooling strategies on surface roughness and tool wear during soft materials milling. Journal of Materials and Design 30 (2009). p.896

DOI: 10.1016/j.matdes.2008.05.037

Google Scholar

[4] C.M. Gao, K.J. Bosschaart, J.C.H. Zeegers and A.T.A.M. De Waele: Experimental study on a simple Ranque - Hilsch vortex tube. Cyrogenics 45(2005). p.173

DOI: 10.1016/j.cryogenics.2004.09.004

Google Scholar

[5] Y. Xue, M. Arjomandi and R. Kelso: Visualization of the flow structure in a vortex tube. Experimental Thermal and Fluid Science 35. p.1514

DOI: 10.1016/j.expthermflusci.2011.07.001

Google Scholar

[6] S. Eiamsa-ard and P. Promvonge: Review of Ranque-Hilsch effects in vortex tubes. Renewable & Sustainable Energy Reviews12 (2008). p.1822

DOI: 10.1016/j.rser.2007.03.006

Google Scholar

[7] R.T Balmer: Pressure driven ranque-hilsch temperature separation in liquids. Journal of Fluids Engineering, Volume 110. p.161

DOI: 10.1115/1.3243529

Google Scholar

[8] A. M. Crocker, S.M. White, F. Bremer and A. Space: Experimental results of a vortex tube air separator for advanced space transportation. 39th Joint Propulsion Conference & Exhibit 2003.

DOI: 10.2514/6.2003-4451

Google Scholar

[9] B. Markal, O. Aydin and M. Acvi: An experimental study on the effect of the valve angle of counter flow Ranque-Hilsch vortex tubes on thermal energy separation. Journal of Experimental Thermal and Fluid Science 34 (2010). p.966

DOI: 10.1016/j.expthermflusci.2010.02.013

Google Scholar

[10] J. Liu and K. Chou: On temperatures and tool wear in machining hypereutectic Al-Si alloys with vortex cooling tubes. International Journal of Machine Tools and Manufacture 47 (2007). p.635

DOI: 10.1016/j.ijmachtools.2006.04.008

Google Scholar

[11] Y.S Liao, H. M. Lin and Y. C. Chen: Feasibility study of the minimum quantity lubrication in high speed milling of NAK80 hardened steel by coated carbide tool. International Journal of Machine Tools & Manufacture 47. p.1667

DOI: 10.1016/j.ijmachtools.2007.01.005

Google Scholar

[12] A.A. Yazid, Z. Taha and I.P. Almanar: A review of cooling in high speed machining (HSM) of mold and die steel. Scientific Research and Essays Vol 5 (5). p.412

Google Scholar

[13] M.A. El Baradie: Cutting fluids: Part I: Characterisation. Journal of Materials Processing Technology 56 (1996). p.786

DOI: 10.1016/0924-0136(95)01892-1

Google Scholar