AC Electrical Properties of Titanate-Linkcoupled Carbon Black Filled Polypropylene Composites

Article Preview

Abstract:

In this paper, Carbon black was activated using titanate-type coupling agent, and then filled into polypropylene to prepare conductive composites, whose alternating current (AC) electrical properties, including impendence Z, phase angel θ, dielectric constantε and dissipation factor tgδ that is a function of frequency and carbon black concentration were investigated by AC impedance spectroscopy. The percolation threshold of 5wt% carbon black concentration was obtained from the experimental result of volume resistivity for the conductive composites. It was found that the variation of AC electrical properties, which is a function of frequency, was dramatic and dependent on the filler concentration. It was also found that dependence of the real and the imaginary parts of impendence on frequency decreased with the increased concentration of carbon black, while the phase angle, dielectric constant and dissipation factor increased. The AC electrical properties were given based on the conductive network model and the corresponding equivalent circuit were concluded

You might also be interested in these eBooks

Info:

Periodical:

Pages:

644-651

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.Brehmer, Elektrische eigenschaften polymerer festkörper-physikalische grundlagen und technische anwendungen. teil I. Polymerelektronik. Acta Polymerica. 1983,34(5): 278-286.

DOI: 10.1002/actp.1983.010340508

Google Scholar

[2] Jeevananda T., Siddaramaiah, Somashekarappa H., et al, Electrical, physicomechanical, and X-ray studies on ethylene-vinyl acetate copolymer/polyaniline blends. Journal of Applied Polymer Science. 2002,83(8): 1730-1735.

DOI: 10.1002/app.10098

Google Scholar

[3] Sathyanarayana D.N., Rao Palle Swapna, Inverted emulsion cast electrically conducting polyaniline- polystyrene blends. Journal of Applied Polymer Science. 2002,86(5): 1163- 1171.

DOI: 10.1002/app.11059

Google Scholar

[4] M.Omastová, I. Chodák, J.Piontech, Electrical and mechanical properties of conducting polymer composites. Synthetic Metals. 1999,102:1251-1252.

DOI: 10.1016/s0379-6779(98)01453-2

Google Scholar

[5] Javn Chodák, Mária Omastová, Jürgen Pionteck. Relation between electrical and mechanical properties of conducting polymer composites. Journal of Applied Polymer Science. 2001(82): 1903-1906.

DOI: 10.1002/app.2035

Google Scholar

[6] Francois Carmona,Jérôme Ravier. Electrical properties and microstructure of carbon black-filled polymers. Carbon. 2002,40:151-156.

DOI: 10.1016/s0008-6223(01)00166-x

Google Scholar

[7] Reboul JP, Maussalli G. About some D-C conduction processes in carbon black filled polymer. International Journal of Polymetric Material. 1976(5): 233-238

Google Scholar

[8] J.Yacubowicz, M.Narkis, Electrical and dielectric properties of segregated carbon black-polyethylene systems . Polymer Engineering and Science. 1990(30): 459-468.

DOI: 10.1002/pen.760300806

Google Scholar

[9] Gun Joo Lee, Kyung Do Suh. Study of electrical phenomena in carbon black-filled HDPE composites. Polymer Engineering and Science.1998 (38): 471-477.

DOI: 10.1002/pen.10209

Google Scholar

[10] Javier G. Mallette, Luis M. Quei, Alfredo Marquez, Octavio Manero. Carbon black-filled PET/HDPE blends: effect of the CB structure on rheological and electric properties. Journal of Applied Polymer Science. 2001 (81): 562-569.

DOI: 10.1002/app.1471

Google Scholar

[11] S.Blacher, F.Brouers, A.Sarychev, A.Ramsamugh, P.Gadenne. Relation between morphology and alternating current electrical properties of granular metallic films close to percolation threshold. Langmuir. 1996(12): 183-188.

DOI: 10.1021/la940707x

Google Scholar

[12] S. Abdul Jawad, A. Alnajjar. Frequency and temperature dependence of AC electrical properties of graphitized carbon-black filled rubbers. Polymer International. 1997(44): 208-212.

DOI: 10.1002/(sici)1097-0126(199710)44:2<208::aid-pi840>3.0.co;2-m

Google Scholar

[13] T.A. Ezquerra, M.T. Connor, S.Roy, M.Kulescza. Alternating-current electrical properties of graphite, carbon-black and carbon-fiber polymeric composites. Composites Science and Technology. 2001(61): 903-909.

DOI: 10.1016/s0266-3538(00)00176-7

Google Scholar

[14] Manuela Hindermann-Bischoff, Francoise Ehrburger-Dolle. Electrical conductivity of carbon black- polyethylene composites Experimental evidence of the change of cluster connectivity in the PTC effect. Carbon. 2001(39): 375-382.

DOI: 10.1016/s0008-6223(00)00130-5

Google Scholar

[15] Soo-Jin Park, Hyun-Chel Kim, Hak-Yong Kim. Roles of work of adhesion between carbon blacks and thermoplastic polymers on electrical properties of composites. Journal of Colloid and Interface Science. 2002(255): 145-149.

DOI: 10.1006/jcis.2002.8481

Google Scholar

[17] I.Balberg. A comprehensive picture of the electrical phenomena in carbon black-polymer composites. Carbon. 2002(40): 139-143.

DOI: 10.1016/s0008-6223(01)00164-6

Google Scholar

[18] A.K. Sarychev, F.Brouers. New scaling for ac properties of percolating composite materials. Physical Review Letters. 1994,73:2895-2898.

DOI: 10.1103/physrevlett.73.2895

Google Scholar

[19] Nicolaus Probst,Eusebiu Grivei. Structure and electrical properties of carbon black. Carbon. 2002,40:201-205.

DOI: 10.1016/s0008-6223(01)00174-9

Google Scholar

[20] Dana Pantea,Hans Darmstadt,Serge Kaliaguine,Lydia Sümmchen,Chistian Roy. Electrical conductivity of thermal carbon blacks influence of surface chemistry. Carbon. 2001,39:1147-1158.

DOI: 10.1016/s0008-6223(00)00239-6

Google Scholar

[21] Bueche F. Modification of Polymers Under Heterogeneous Conditions. Journal of Applied Physics.1972,43:4837.

Google Scholar

[22] Kirkpatrick S. Percolation and conduction. Rev. mod. Phys.1973,45:574-588.

DOI: 10.1103/revmodphys.45.574

Google Scholar

[23] Reboul JP,Maussalli G. About some D-C conduction proceses in carbon black filled polymer. International Polymeric Material. 1976,5:133-146

Google Scholar

[24] L.J. Adriaanse, J.A. Reedijk, P.A.A. Teunissen, H.B. Brom. High-dilution carbon-black polymer composites: hierarchical percolating network derived from Hz to THz ac conductivity. Physical Review Letters. 1997,78:1755-1758

DOI: 10.1103/physrevlett.78.1755

Google Scholar