[1]
P.L. Butzer, U. Westphal, An introduction to fractional calculus. World Scientific, Singapore, 2000.
Google Scholar
[2]
J. Sabatier, S. Poullain etc., Robust speed control of a low damped electromechanical system based on CRONE control: application to a four mass experimental test bench, Nonlinear Dyn. 38(2004) 383-400.
DOI: 10.1007/s11071-004-3768-2
Google Scholar
[3]
M. Caputo, F, Mainardi, A new dissipation model based on memory mechanism, Pure Appl Geophys. 91(1971) 134-47.
DOI: 10.1007/bf00879562
Google Scholar
[4]
F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus Appl Anal 4(2001)153-92.
Google Scholar
[5]
O.P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn. 29 (2002) 145-55.
Google Scholar
[6]
T.J. Anastasio, The fractional-order dynamics of brainstem vestibulo-oculomotor neurons, Biol Cybern. 72(1994) 69-79.
DOI: 10.1007/bf00206239
Google Scholar
[7]
M.D. Ortigueira, J.A.T. Machado, Fractional calculus applications in signals and systems, Signal Process 86(2006) 2503-4.
DOI: 10.1016/j.sigpro.2006.02.001
Google Scholar
[8]
C.G. Li, G. Chen, Chaos and hyperchaos in the fractional-order R¨ ossler equations, Physica A 341 (2004) 55-61.
Google Scholar
[9]
C.G. Li, X. Liao, J. Yu, Synchronization of fractional order chaotic systems, Phys. Rev. E 68 (2003) 067203.
Google Scholar
[10]
T.S. Zhou, C.P. Li, Synchronization in fractional-order differential systems, Physica D 212 (2005) 111-125.
Google Scholar
[11]
J.G. Lu, Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal, Chaos Solitons Fractals 27 (2006) 519-525.
DOI: 10.1016/j.chaos.2005.04.032
Google Scholar
[12]
J.B. Hu, Y. Han, L.D. Zhao, A novel stable theorem for fractional system and applying it in synchronizing fractional chaotic system based on backstepping approach, Acta Phys. Sin. 58 (2009) 2235-2239.
DOI: 10.7498/aps.58.2235
Google Scholar
[13]
M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, J. Roy. Austral. Soc. 13(1967)529-539.
DOI: 10.1111/j.1365-246x.1967.tb02303.x
Google Scholar
[14]
M.R. Faieghi, H. Delavari, Chaos in fractional-order Genesio-Tesi system and its synchronization. Commun Nonlinear Sci Numer Simulat, 17(2012) 731-741.
DOI: 10.1016/j.cnsns.2011.05.038
Google Scholar
[15]
W.H. Deng, Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Anal., Real World Appl. 72(2009) 1768–1777.
DOI: 10.1016/j.na.2009.09.018
Google Scholar