Collaborative Optimization of Replacement and Spare Ordering of a Deteriorating System with Two Failure Types

Article Preview

Abstract:

This paper proposes a model to find optimal ordering and replacement policies for a deteriorating system. Assume that the life time of system has a normal distribution, and it has two failures types, typeⅠfailure is repairable, whereas typeⅡfailure is catastrophic which leads to replacement. A replacement policy N is adopted by which the system will be replaced by an identical new one if available at the time following the Nth typeⅠfailure or the 1st typeⅡfailure whichever occurs first. Furthermore, it considers an ordering policy M in which a spare unit is ordered at the time of the Mth typeⅠfailure or 1st typeⅡfailure, whichever occurs first. The objective is to derive the long-run average cost rate and then find the optimal policy (N,M) such that the average cost rate is minimized. Finally, a numerical example is provided to illustrate the proposed model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

210-214

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. E. Barlow and L. C. Hunter. Oper. Res, vol. 8(1960), p.90–100.

Google Scholar

[2] M. Brown and F. Proschan. J. Appl. Probab, vol. 20(1983), p.851–859.

Google Scholar

[3] H. W. Block, W. S. Borges and T. H. Savits. J. Appl. Probab, vol. 22(1985), p.370–385.

Google Scholar

[4] M. Kijima. J. Appl. Probab., vol. 26(1989), p.89–102.

Google Scholar

[5] V. Makis and A. K. S. Jardine. J. Appl. Probab, vol. 43(1992), p.111–120.

Google Scholar

[6] S. H. Sheu. Eur. J. Oper. Res, vol. 108(1998), p.345–362.

Google Scholar

[7] T. Nakagawa and S. Osaki. J. Appl. Probab, vol. 11(1974), p.102–110.

Google Scholar

[8] S. Osaki and S. Yamada. IEEE. Trans. Reliab, vol. 25(1976), p.344–345.

Google Scholar

[9] S. H. Sheu and W. S. Griffith. IEEE. Trans. Reliab, Vol. 50(2001), p.302–309.

Google Scholar

[10] S. H. Sheu and Y. H. Chien. Eur. J. Oper. Res, vol. 159(2004), p.132–144.

Google Scholar

[11] S. G. Allen and D. A. D'esopo. Oper. Res, Vol. 16(1968), p.669–674.

Google Scholar

[12] A. D. Wiggins. Technometrics, vol. 9(1967), p.661–665.

Google Scholar

[13] L. C. Thomas and S. Osaki. Eur. J. Oper. Res, vol. 2(1978), p.409–419.

Google Scholar

[14] K. S. Park and Y. T. Park. Eur. J. Oper. Res, vol. 23(1986), p.320–330.

Google Scholar

[15] S. H. Sheu. Int. J. Syst. Sci, vol. 28(1997), p.241–247.

Google Scholar

[16] Y. H. Chien and J. A. Chen. Appl. Math. Model., vol. 34(2010), p.716–724.

Google Scholar

[17] M. M. Yu, Y. H. Tang, Y. H. Fu, L. M. Pan and X. W. Tang. Comput Ind Eng, vol. 62(2012), p.609–615.

Google Scholar

[18] S. M. Ross, Stochastic Processes, 2nd ed. New York: Wiley, 1996.

Google Scholar