Analysis of Statistics Data Based on Mixed Visualization Techniques

Article Preview

Abstract:

Economic statistics data can exhibit the profiles of social economy phenomenon. With constantly increasing demand for analysis of the statistical data, the statistical departments are urging to find a more effective and easier way to present statistical data to users. This paper takes full advantages of the geospatial characteristics of statistical data and then presents a mixed visual analysis method to implement data process and display statistical data effectively. In order to enhance the visualization results by applying the rules of visual perception, the proposed system combines a variety of visualization techniques and coordinated multiple views together. Through the study of spatial-temporal and multivariate statistical data, users can adopt interactive techniques to further analyze the interested statistical data. The experimental results show that the proposed mixed visualization techniques are easy to discover the variation law of data and offer a fast and convenient visualization and analysis tool for statistical data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2479-2484

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Inselberg A, Dimsdale B. Parallel coordinates: a tool for visualizing multi-dimensional geometry[C]. In Proceedings of IEEE Visualization 1990. Los Alamitos: IEEE Computer Society Press, 1990: 361-378

DOI: 10.1109/visual.1990.146402

Google Scholar

[2] H. Hauser, F. Ledermann, and H. Doleisch. Angular brushing of extended parallel coordinates[C]. In Proceedings of the IEEE Symposium on Information Visualization 2007. Los Alamitos: IEEE Computer Society Press, 2007: 127–130

DOI: 10.1109/infvis.2002.1173157

Google Scholar

[3] D. Brodbeck and L. Girardin. Design study: using multiple coordinated views to analyze geo-referenced high-dimensional datasets[C]. In Proceedings of The Coordinated and Multiple Views in Exploratory Visualization 2003. Los Alamitos: IEEE Computer Society Press, 2003: 104–111

DOI: 10.1109/cmv.2003.1215008

Google Scholar

[4] H. Guo, Z. Wang, B. Yu, H. Zhao, and X. Yuan. Tripvista: Triple per- spective visual trajectory analytics and its application on microscopic traffic data at a road intersection[C]. In Proceedings of IEEE Pacific Visualization Symposium, 2011.

DOI: 10.1109/pacificvis.2011.5742386

Google Scholar

[5] B. Johnson and B. Shneiderman. Treemaps: a space-filling approach to the visualization of hierarchical information structures[C]. In Proceedings of the 2nd International IEEE Visualization Conference 1991. Los Alamitos: IEEE Computer Society Press, 1991: 284–291

DOI: 10.1109/visual.1991.175815

Google Scholar

[6] SmartMoney Map of the Market[C/OL]. http://www.smartmoney.com/marketmap/

Google Scholar

[7] Piringer H, Korsara R, Hauser H. Interactive focus+context visualization with linked 2D/3D scatterplots[C]. In Proceedings of the 2nd International Conference on Coordinated and Multiple View s in Exploratory Visualization 2004. Los Alamitos: IEEE Computer Society Press, 2004: 49- 60

DOI: 10.1109/cmv.2004.1319526

Google Scholar

[8] Gapminder[C/OL]. http://www.gapminder.org/world/

Google Scholar

[9] Johansson S., Jern M. GeoAnalytics Visual Inquiry and Filtering Tools in Parallel Coordinates Plot[C]. In proceedings of the 15th annual ACM international symposium on Advances in geographic information systems (2007)

DOI: 10.1145/1341012.1341055

Google Scholar

[10] Andrienko V, Anderienko N, Voss H, GIS for Everyone: the Common GIS project and beyong, Peterson M. Maps and the Internet, Elsevier Science 2003. Los Alamitos: IEEE Computer Society Press2003: 131-146

DOI: 10.1016/b978-008044201-3/50010-4

Google Scholar

[11] D. Guo, J. Chen, A. MacEachren, and K. Liao. A visualization system for space-time and multivariate patterns (vis-stamp)[C]. IEEE Transactions on Visualization and Computer Graphics2006. Los Alamitos: IEEE Computer Society Press 12(6):1461–1474

DOI: 10.1109/tvcg.2006.84

Google Scholar

[12] OECD eXplorer.[Online]. Available: http://www.oecd.org/gov/regional/statisticsindicators/explorer

Google Scholar

[13] T. Slocum, R. McMaster, F. Kessler, H. Howard Thematic Cartography and Geovisualization(Third Edition) [M]. Pearson Prentice Hall: Upper Saddle River, NJ. (2009)

DOI: 10.1201/9781003150527

Google Scholar

[14] Kaya, N., & Epps, H. H. Relationship between color and emotion: A study of college students[J]. College Student Journal, 2004, 38: 396–405

Google Scholar

[15] Hatta, T., Yoshida, H., Kawakami, A., & Okamoto, M. Color of computer display frame in work performance, mood, and physiological response[J]. Perceptual and Motor Skills, 2002, 94: 39–46

DOI: 10.2466/pms.2002.94.1.39

Google Scholar

[16] Camgoz, N., Yener, C., & Guvenc, D. Effects of hue, saturation, and brightness: Part 2[J]. Color Research and Application, 2004, 29(1): 20–28

DOI: 10.1002/col.10214

Google Scholar

[17] N. Feldt, H. Pettersson, J. Johansson, and M. Jern. Tailor-made exploratory visualization for statistics Sweden[C]. In Proceedings of the 3rd IEEE International Conference on Coordinated & Multiple Views in Exploratory Visualization 2005. Los Alamitos: IEEE Computer Society Press 2005: 133–142

DOI: 10.1109/cmv.2005.19

Google Scholar

[18] J.H.T. Claessen, J.J. van Wijk. Flexible Linked Axes for Multivariate Data Visualization[C]. IEEE Transactions on Visualization and Computer Graphics 2011. Los Alamitos: IEEE Computer Society Press 2011: 17(12), 2310-2316

DOI: 10.1109/tvcg.2011.201

Google Scholar