[1]
V. Volterra: Theory of Functionals and of Integral and Integro-differential Equations (Dover, New York 1959).
Google Scholar
[2]
B.R. Maner, F.J. Doyle, B.A. Ogunnaike and R.K. Pearson: Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. Automatica, Vol. 32 (1996) No. 9, p.1285.
DOI: 10.1016/0005-1098(96)00086-6
Google Scholar
[3]
C. Fernandes and G. Favier: Blind identification of multiuser nonlinear channels using tensor decomposition and precoding. Signal Processing, Vol. 89 (2009) No. 12, p.2644.
DOI: 10.1016/j.sigpro.2009.05.012
Google Scholar
[4]
I. Argatov and E.A. Butcher: On the separation of internal and boundary damage in slender bars using longitudinal vibration frequencies and equivalent linearization of damaged bolted joint response. Journal of Sound and Vibration, Vol. 330 (2011).
DOI: 10.1016/j.jsv.2011.01.023
Google Scholar
[5]
A. Chatterjee: Structural damage assessment in a cantilever beam with a breathing crack using higher order frequency response functions. Journal of Sound and Vibration, Vol. 329 (2010) No. 16, p.3325.
DOI: 10.1016/j.jsv.2010.02.026
Google Scholar
[6]
X.J. Jing, Z.Q. Lang and S.A. Billings: Magnitude bounds of generalized frequency response functions for nonlinear Volterra systems described by NARX model. Automatica Vol. 44 (2008), p.838.
DOI: 10.1016/j.automatica.2007.06.020
Google Scholar
[7]
S. Boyd, Y.S. Tang and L.O. Chua: Measuring Volterra kernels. IEEE Transactions on Circuits and Systems, CAS-30 (1983) No. 8, p.571.
DOI: 10.1109/tcs.1983.1085391
Google Scholar
[8]
L.O. Chua and Y.L. Liao: Measuring Volterra kernels ii. International Journal of Circuit Theory and Applications, Vol. 17 (1989), p.151.
DOI: 10.1002/cta.4490170204
Google Scholar
[9]
L.M. Li and S.A. Billings: Estimation of generalized frequency response functions for quadratically and cubically nonlinear systems. Journal of Sound and Vibration, Vol. 330 (2011), p.461.
DOI: 10.1016/j.jsv.2010.08.018
Google Scholar
[10]
D.R. Brillinger: The identification of polynomial systems by means of higher order spectra. Journal of Sound and Vibration, Vol. 12 (1970), p.301.
DOI: 10.1016/0022-460x(70)90074-x
Google Scholar
[11]
A.M. Zoubir: Identification of Quadratic Volterra Systems Driven by Non-Gaussian Processes. IEEE Transaction on Signal Processing, Vol. 43 (1995) No. 5, p.1302.
DOI: 10.1109/78.382423
Google Scholar
[12]
J.C. Ralston, A.M. Zoubir and B. Boashash: Identification of a class of nonlinear systems under stationary non-Gaussian excitation. IEEE Transaction on Signal Processing, Vol. 45 (1997) No. 3, p.719.
DOI: 10.1109/78.558490
Google Scholar