Experimental and Numerical Investigation of CO2 Injection into Water-Saturated Porous Media: Effect of Capillary Pressure on Displacement Efficiency

Article Preview

Abstract:

CO2 sequestration in deep saline aquifers is regard as the most promising option among all the CO2 storage technologies. Capillary pressure can influence the CO2 storage efficiency in the aquifers. The core-scale experimental and numerical simulation studies are usually used to understand the mechanism and degree of such influence. Based on both magnetic resonance imaging (MRI) technique and numerical simulation method, this study investigates the effect of capillary pressure on the CO2 displacement efficiency in water-saturated porous media especially in quantitative form. Our results indicate: (1) the magnitude of capillary pressure may significantly affect the CO2-water displacement efficiency, and the displacement efficiency declines with increasing capillary pressure; (2) Sensitivity of the numerical model to capillary pressure becomes more unobvious with increasing capillary pressure. Thus, an accurate capillary pressure parameter is particularly required for improving the reliability of the model predictions in the case of the high permeability porous media.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-166

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Michael, M. Arnot, P. Cook, et al: Energy Procedia, Vol. 1 (2009), pp.3197-3204.

Google Scholar

[2] J-C. Perrin, R.W. Falta, S. Krevor, et al: Energy Procedia, Vol. 4 (2011), pp.3210-3215.

Google Scholar

[3] T. Suekane, T. Ishii, S. Tsushima and S. Hirai: J. Therm. Sci. Tech-Jan., Vol. 1 (2006), pp.1-11.

Google Scholar

[4] T. Suekane, S. Soukawa, S. Iwatani, et al: Energy, Vol. 30 (2005), pp.2370-2382.

Google Scholar

[5] K. Pruess, C.M. Oldenburg and G.J. Moridis: Lawrence Berkeley Laboratory Report, LBL-43134, (1999).

Google Scholar

[6] Y. Liu, Y. Song, Y. Zhao, et al: Procedia Environmental Sciences, Vol. 11 (2011), pp.650-654.

Google Scholar

[7] K. Zhang, Y.S. Wu and K. Pruess: Lawrence Berkeley Laboratory Report, LBNL-315E (2008).

Google Scholar

[8] J. Niessner, S. Berg and S.M. Hassanizadeh: Transp. Porous Med., Vol. 88 (2011), pp.133-148.

Google Scholar

[9] L. Brevdo, R. Helmig, M. Haragus-Courcelle, et al: Transp. Porous Med., Vol. 44 (2001), pp.507-537.

DOI: 10.1023/a:1010723604900

Google Scholar

[10] K. Lappalainen, M. Manninen, V. Alopaeus, et al: Transp. Porous Med., Vol. 77 (2008), pp.17-40.

Google Scholar

[11] J.G. Freitas, B. Doulatyari, J.W. Molson, et al: Journal of contaminant hydrology, Vol 125. (2011), pp.70-85.

Google Scholar

[12] K. Li, Y. U. and Z. Chen: paper SPE-146648, SPE Annual Technical Conference and Exhibition, Colorado, USA (2011).

Google Scholar