Performance Analysis of Wet Compression Process under Critical Conditions of Water Injection

Abstract:

Article Preview

In wet compression process water is injected at an inlet of compressor and continuous cooling occurs due to evaporation of water droplets during the compression process of air, which can save the compression work and enhance the performance of gas turbine system. In this work, performance analysis of the wet compression process is carried out under the critical conditions of water injection which are defined as the maximum water injection which can be evaporated completely inside the compressor. For various ambient conditions the important variables of wet compression process such as water injection ratio, temperature-averaged polytropic coefficient, compressor outlet temperature, and compression work are estimated under the critical injection conditions. Parametric studies show that compression work decreases with ambient temperature, however, the reduction ratio of compression work relative to dry increases with ambient temperature.

Info:

Periodical:

Edited by:

Mohamed Othman

Pages:

2541-2545

Citation:

K. H. Kim and C. H. Han, "Performance Analysis of Wet Compression Process under Critical Conditions of Water Injection", Applied Mechanics and Materials, Vols. 229-231, pp. 2541-2545, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] R.A. Hinrichs and M. Kleinbach, Energy; Its use and the environment, 4th Ed., Thomson (2006).

[2] K.H. Kim, C.H. Han, K. Kim, Thermochimica Acta 530 (2012), pp.7-16.

[3] M. Jonsson and J. Yan, Energy 30 (2005), pp.1013-1078.

[4] R. Bhargava and C.B. Meher-Homji, J. Eng. Gas Turbines and Power 127 (2005) , pp.145-158.

[5] M. Chaker, C.B. Meher-Homji and T. Mee III, ASME J. of Eng. for Gas Turbines and Power 126 (2004), pp.545-558.

[6] M. Chaker, C.B. Meher-Homji and T. Mee III, ASME J. of Eng. for Gas Turbines and Power 126 (2004), pp.559-570.

[7] M. Chaker, C.B. Meher-Homji and T. Mee III, ASME J. of Eng. for Gas Turbines and Power 126 (2004), pp.571-580.

[8] Bhargava R. K., C. B. Meher-Homji, M. A. Chaker, M. Bianchi, F. Melino, A. Peretto, S. Ingistov, ASME paper GT2005-68337 (2005).

[9] K.H. Kim, Appl. Mech. Materials 110-116 (2012), pp.2109-2116.

[10] K.H. Kim, H.J. Ko, K. Kim and H. Perez-Blanco, App. Therm. Eng. 33-34 (2012), pp.62-69.

[11] S. Jolly, Power-Gen International, Orlando (2002), pp.1-11.

[12] Q. Zheng, Y. Sun, Y. Li and Y. Wang, ASME J. Turbomach. 125 (2003), pp.489-496.

[13] A.J. White and A.J. Meacock, ASME paper GT-2003-38237 (2003).

[14] H. Perez-Blanco, K.H. Kim and S. Ream, App. Energy 84 (2007), pp.1028-1043.

[15] K.H. Kim and H. Perez-Blanco, ASME Paper, GT2006-90482 (2006).

[16] K.H. Kim and H. Perez-Blanco, App. Energy 84 (2007), pp.16-28.

[17] K.H. Kim, H.J. Ko and H. Perez-Blanco, Int. J. Exergy 8 (2011), pp.16-32.

[18] K.H. Kim, H.J. Ko and H. Perez-Blanco, App. Therm. Eng. 31 (2011), pp.834-840.