Performance Analysis of Wet Compression Process under Critical Conditions of Water Injection

Article Preview

Abstract:

In wet compression process water is injected at an inlet of compressor and continuous cooling occurs due to evaporation of water droplets during the compression process of air, which can save the compression work and enhance the performance of gas turbine system. In this work, performance analysis of the wet compression process is carried out under the critical conditions of water injection which are defined as the maximum water injection which can be evaporated completely inside the compressor. For various ambient conditions the important variables of wet compression process such as water injection ratio, temperature-averaged polytropic coefficient, compressor outlet temperature, and compression work are estimated under the critical injection conditions. Parametric studies show that compression work decreases with ambient temperature, however, the reduction ratio of compression work relative to dry increases with ambient temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2541-2545

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. Hinrichs and M. Kleinbach, Energy; Its use and the environment, 4th Ed., Thomson (2006).

Google Scholar

[2] K.H. Kim, C.H. Han, K. Kim, Thermochimica Acta 530 (2012), pp.7-16.

Google Scholar

[3] M. Jonsson and J. Yan, Energy 30 (2005), pp.1013-1078.

Google Scholar

[4] R. Bhargava and C.B. Meher-Homji, J. Eng. Gas Turbines and Power 127 (2005) , pp.145-158.

Google Scholar

[5] M. Chaker, C.B. Meher-Homji and T. Mee III, ASME J. of Eng. for Gas Turbines and Power 126 (2004), pp.545-558.

DOI: 10.1115/1.1712981

Google Scholar

[6] M. Chaker, C.B. Meher-Homji and T. Mee III, ASME J. of Eng. for Gas Turbines and Power 126 (2004), pp.559-570.

DOI: 10.1115/1.1712982

Google Scholar

[7] M. Chaker, C.B. Meher-Homji and T. Mee III, ASME J. of Eng. for Gas Turbines and Power 126 (2004), pp.571-580.

DOI: 10.1115/1.1712983

Google Scholar

[8] Bhargava R. K., C. B. Meher-Homji, M. A. Chaker, M. Bianchi, F. Melino, A. Peretto, S. Ingistov, ASME paper GT2005-68337 (2005).

DOI: 10.1115/gt2005-68337

Google Scholar

[9] K.H. Kim, Appl. Mech. Materials 110-116 (2012), pp.2109-2116.

Google Scholar

[10] K.H. Kim, H.J. Ko, K. Kim and H. Perez-Blanco, App. Therm. Eng. 33-34 (2012), pp.62-69.

Google Scholar

[11] S. Jolly, Power-Gen International, Orlando (2002), pp.1-11.

Google Scholar

[12] Q. Zheng, Y. Sun, Y. Li and Y. Wang, ASME J. Turbomach. 125 (2003), pp.489-496.

Google Scholar

[13] A.J. White and A.J. Meacock, ASME paper GT-2003-38237 (2003).

Google Scholar

[14] H. Perez-Blanco, K.H. Kim and S. Ream, App. Energy 84 (2007), pp.1028-1043.

Google Scholar

[15] K.H. Kim and H. Perez-Blanco, ASME Paper, GT2006-90482 (2006).

Google Scholar

[16] K.H. Kim and H. Perez-Blanco, App. Energy 84 (2007), pp.16-28.

Google Scholar

[17] K.H. Kim, H.J. Ko and H. Perez-Blanco, Int. J. Exergy 8 (2011), pp.16-32.

Google Scholar

[18] K.H. Kim, H.J. Ko and H. Perez-Blanco, App. Therm. Eng. 31 (2011), pp.834-840.

Google Scholar