Layer Thickness Variation in Two-Phase Flow of a Third Grade Fluid

Article Preview

Abstract:

In this paper we consider the two-layer flow of a third grade fluid between two horizontal infinite parallel plates. The fluid in both layers is pressure driven in a horizontal direction (Poiseuille flow). We relax the assumption of symmetry and consider layers of variable thickness. To solve the non-linear differential equations describing the motion of a third grade fluid we use the Homotopy Analysis Method and provide a solution which accurate up to the second order. We apply this solution to attain the velocity profile in different cases for different layer thickness, pressure gradient and material constants that describe the non-Newtonian behavior of the fluid.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-278

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Luo, M. G. Blyth and C. Pozrikidis: J. Eng. Math, Vol. 60 (2008), p.127.

Google Scholar

[2] F. Kang and K. Chen: Int. J. Multiphase Flow, Vol. 21 (1995), p.501.

Google Scholar

[3] W.P. Graebel: Advanced Fluid Mechanics(Elsevier Inc., USA 2007).

Google Scholar

[4] R. L. Fosdick, K. R. Rajagopal in: Proceedingsofthe Royal Society of London Series A, MathematicalandPhysicalSciences, Vol. 369 (1980).

Google Scholar

[5] T. Hayat, F. Shahzad, M. Ayub: Applied Mathematical Modeling Vol. 31 (2007), p.2424.

Google Scholar

[6] F. Ahmad: Common Nonlinear Sci. Numer Simulat Vol. 14 (2009), p.2848.

Google Scholar

[7] A. Shah and S. ul Islam: World Applied Science Journal Vol. 9 (2011), p.1397.

Google Scholar

[8] S. Liao: The proposed homotopy analysis technique for the solution of nonlinear problems (PhD thesis, Jiao Tong University, Shanghai 1992).

Google Scholar

[9] S. Liao: Beyond Perturbation: introduction to homotopy analysis method (Chapman&Hall/CRC, 2004).

Google Scholar

[10] A. M. Siddiqui, M. Ahmed, S. Islam andQ. K. Ghori: Acta Mechannica Vol. 180 ( 2005), p.117.

Google Scholar

[11] T. Hayat, R. Ellahi, F. M. Mahomed: Acta Mechanica Vol. 188 (2007), p.69.

Google Scholar

[12] L. Talon, E. Meilberg: J. Fluid Mech. Vol. 686 (2011), p.484.

Google Scholar

[13] A. Pinarbasi and A. Liakopoules: J. Non-Newtonian Fluid Mech. Vol. 57 (1995), p.227.

Google Scholar

[14] R. S. Rivlin and J. L. Erikson: J. ration. Mech. Analysis Vol. 4 (1955), p.323.

Google Scholar

[15] A. A Jouneidi, G. Domairyand, M. Babaelahi: Meccanica Vol. 45 (2010), p.857.

Google Scholar

[16] A. Alomari, M. Nooraniand R. Nazar: Appl. Math. Scie. Vol. 2 (2008), p. (1963).

Google Scholar

[17] S. Abbasbandy: Z. angew. Math. Phys Vol. 59 (2008), p.51.

Google Scholar

[18] M. Sajid, T. Hayat andS. Asghar: Nonlinear Dynamics Vol. 50 (2007), p.27.

Google Scholar

[19] J. Cheng, S. Liao, R. N. Mohapatraand K. Vajravelu: J. Mathematical Analysis andApplication Vol. 343 (2008), p.233.

Google Scholar

[20] M. Mohinddin, M. Sadiq, A. Siddiqui: The Journal of Num. And Comp. Scien. Vol. 1 (2010), p.106.

Google Scholar