Guaranteed Cost Control of Saturated Time-Varying Delay Systems

Article Preview

Abstract:

This paper mainly considers the control problem of saturated time-varying delay systems. Applying the saturation degree function and the convex hull theory to handle the saturated terms, we put forward the guaranteed cost controller of the system according to the Lyapunov-Krasovskii theorem. Then we make use of Schur complement to convert the QMI (quadratic matrix inequality) to a LMI (linear matrix inequality) and so it can be easily used as controller synthesis. Finally, we apply the guaranteed cost controller to a two dimentional time-varying delay cellular neural networks, and the simulation results show the effectiveness of the proposed controller.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-134

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Dornheim, Report pinpoints factors leading to YF–22 crash,Aviation Week Space Tech, 137(1992) 53-54.

Google Scholar

[2] G. Stein, Respect the unstable, IEEE Contr. Syst. Mag., 23(2000), 12-25.

Google Scholar

[3] S. Tarbouriech, M. Turner, Anti-windup design, an overview of some recent advances and open problems, IET Control Theory Appl., 3(2009), 1-19.

DOI: 10.1049/iet-cta:20070435

Google Scholar

[4] A.H. Glatterfelder, W. Schaufelberger, Stability analysis of single loop control systems with saturation and antireset-windup circuits, IEEE T. Automat. Contr., 28(1983), 1074-1080.

DOI: 10.1109/tac.1983.1103180

Google Scholar

[5] K. Yakoubi, Y. Chitour, Linear systems subject to input saturation and time delay, Global asymptotic stabilization, IEEE T. Automat. Contr., 52(2007), 874-879.

DOI: 10.1109/tac.2007.895916

Google Scholar

[6] H. Xin, D. Gan, J. Qiu. Stability analysis of linear dynamical systems with saturation nonlinearities and a short time delay. Phys. Lett. A, 372(2008), 3999-4009.

DOI: 10.1016/j.physleta.2008.03.015

Google Scholar

[7] L. Zhang, E. Boukas, A. Haidar. Delay-range-dependent control synthesis for time-delay systems with actuator saturation, Automatica, 44(2008), 2691-2695.

DOI: 10.1016/j.automatica.2008.03.009

Google Scholar

[8] H.K. Khalil, J.W. Grizzle. Nonlinear systems. third ed, Upper Saddle River, Prentice Hall, (2002).

Google Scholar

[9] H. Fang, Z. Lin, Y. Shamash, Disturbance tolerance and rejection of linear systems with imprecise knowledge of actuator input output characteristics, Automatica, 42(2006) , 1523-1530.

DOI: 10.1016/j.automatica.2006.04.008

Google Scholar

[10] T.S. Hu, Z.L. Lin, Control systems with Actuator Saturation, Analysis and Design, Boston, (2001).

Google Scholar

[11] T.S. Hu, Z.L. Lin, B.M. Chen, An analysis and design method for linear systems subject to actuator saturation and disturbance, Automatica, 38(2002), 351-359.

DOI: 10.1016/s0005-1098(01)00209-6

Google Scholar

[12] T.S. Hu, Z.L. Lin, B.M. Chen, Analysis and design for discrete-time systems subject to actuator saturation, Control Lett., 45(2002), 87-112.

DOI: 10.1016/s0167-6911(01)00168-2

Google Scholar

[13] J. Tu, H. He, Guaranteed cost synchronization of chaotic cellular neural networks with time-varying delay, Neural Comput., 24(2012), 217-233.

DOI: 10.1162/neco_a_00191

Google Scholar

[14] J. Tu, H. He, P. Xiong, Guaranteed cost synchronous control of time-varying delay cellular neural networks. Neural Comput. & Applic., 2011, DOI, 10. 1007/s00521-011-0667-6.

DOI: 10.1007/s00521-011-0667-6

Google Scholar

[15] H. He, L. Yan, J. Tu, Guaranteed cost stabilization of time–varying delay cellular neural networks via Riccati inequality approach, Neural Processing Letters, 35(2012), 151-158.

DOI: 10.1007/s11063-011-9208-7

Google Scholar

[16] J.M. Gomes, S. Tarbouriech, Anti-windup design with guaranteed region of stability, an LMI-based approach. IEEE T. Automat. Contr., 50(2005), 106-111.

DOI: 10.1109/tac.2004.841128

Google Scholar

[17] Y.Y. Cao,Z. Lin, D.G. Ward, An anti-windup approach to enlarging domain of attraction for linear systems subject to actuator saturation, IEEE T. Automat. Contr., 47(1), 140-145.

DOI: 10.1109/9.981734

Google Scholar

[18] B. Lu, F. Wu, S. Kim, Linear parameter varying anti-windup compensation for enhanced flight control performance, AIAA J. Guid. Control Dyn, 28(2005), 494-504.

Google Scholar

[19] M. Saeki, N. Wada , Synthesis of a static anti-windup compensator via linear matrix inequalities. Int. J. Robust Nonlin., 12(2002), 927-953.

DOI: 10.1002/rnc.673

Google Scholar

[20] F. Wu , M. Soto, Extended anti-windup control schemes for LTI and LFT systems with actuator saturations, Int. J. Robust Nonlin., 14(2004), 1255-1281.

DOI: 10.1002/rnc.943

Google Scholar