[1]
LUND, R. I., Remanufacturing. Technology Review, 87(2), 18±23. (1984).
Google Scholar
[2]
KRUPP, J. A., St ructuring bills of material for automotive remanufacturing. Productionand InventoryManagement Journal, 34(4), 46±52. (1993).
Google Scholar
[3]
KRUPP, J. A., Core obsolescence forecasting in remanufacturing. Production and InventoryManagement Journal, 33(2), 12±17. (1992).
Google Scholar
[4]
GUIDE JR, V.D.R., SRIVASTAVA, R. and SPENCER, M.S. A evaluation of capacity planning techniques in a remanufacturing environment. International Journal of Production Research, 35: 1, 67-82. (1997).
DOI: 10.1080/002075497195984
Google Scholar
[5]
GUIDE JR, V. D. R., SRIVASTAVA, R. and KRAUS, M. E. Product structure complexity and scheduling of operations in recoverable manufacturing, International Journal of Production Research, 35: 11, 3179-3200. (1997).
DOI: 10.1080/002075497194345
Google Scholar
[6]
DePuy, G. W. , Usher, J. S. , Walker, R. L. and Taylor, G. D. Production planning for remanufactured products, Production Planning & Control, 18: 7, 573-583. (2007).
DOI: 10.1080/09537280701542210
Google Scholar
[7]
Teunter, Ruud H. , Bayindir, Z. Pelin and Heuvel, Wilco Van Den, Dynamic lot sizing with product returns and remanufacturing, International Journal of Production Research, 44: 20, 4377-4400. (2006).
DOI: 10.1080/00207540600693564
Google Scholar
[8]
Grubbström, R. W. and Tang, O. Optimal production opportunities in a remanufacturing system, International Journal of Production Research, 44: 18, 3953-3966. (2006).
DOI: 10.1080/00207540600806406
Google Scholar
[9]
Meltem, Denizel, Mark Ferguson and Gilban Gil,C. Souza. Multiperiod remanufacturing planning with uncertain quality of inputs. IEEE transactions on engineering management, vol. 57, No. 3, 394-404. ( 2010).
DOI: 10.1109/tem.2009.2024506
Google Scholar
[10]
Geem ZW, Kim JH, Loganathan GV, A new heuristic optimization algorithm: harmony search. Simulation, 76(2): 60–68. (2001).
DOI: 10.1177/003754970107600201
Google Scholar
[11]
Lee KS, Geem ZW, Lee SH, Bae KW, The harmony search heuristic algorithm for discrete structural optimization. EngOptimiz, 37(7): 663–684. (2005).
DOI: 10.1080/03052150500211895
Google Scholar
[12]
Mahdavi M, Fesanghary M, Damangir E, An improved harmony search algorithm for solving optimization problems. Appl Math and Comput, 188(2): 1567–1579. (2007).
DOI: 10.1016/j.amc.2006.11.033
Google Scholar
[13]
Geem ZW, Lee KS, Park Y, Application of harmony search to vehicle routing. Am J ApplSci, 2(12): 1552–1557. (2005).
Google Scholar
[14]
Geem ZW, Optimal cost design of water distribution networks using harmony search. EngOptimiz, 38(3): 259–280. (2006).
DOI: 10.1080/03052150500467430
Google Scholar
[15]
Geem ZW, Optimal scheduling of multiple dam system using harmony search algorithm. LNCS, 4507: 316–323. (2007).
DOI: 10.1007/978-3-540-73007-1_39
Google Scholar
[16]
Geem ZW, Harmony search algorithm for solving Sudoku. LNAI, 4692: 371–378. (2007).
Google Scholar
[17]
Zarei O, Fesanghary M, Farshi B, Saffar R J, Rafar MR, Optimization of multi-pass face-milling via harmony search algorithm. J Mater Process Tech, 209(5): 2386-2392. (2009).
DOI: 10.1016/j.jmatprotec.2008.05.029
Google Scholar
[18]
Coelho L S, Bernert DLA, An improved harmony search algorithm for synchronization of discrete-time chaotic system. Chaos SolitonsFract, 41(5): 2526-2532. (2009).
DOI: 10.1016/j.chaos.2008.09.028
Google Scholar
[19]
Wang L, Pan QK, Tasgetiren MF, Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms. Expert SystAppl, 37(12): 7929-7936. (2010).
DOI: 10.1016/j.eswa.2010.04.042
Google Scholar
[20]
Pan QK, Suganthan PN, Liang JJ, Tasgetiren MF, A local-best harmony search algorithm with dynamic sub-harmony memories for lot-streaming flow shop scheduling problem. Expert SystAppl, 38(4): 3252-3259. (2011).
DOI: 10.1016/j.eswa.2010.08.111
Google Scholar
[21]
Gao KZ, Pan QK, Li JQ Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion. Int J AdvManufTechnol, 56: 683-692. (2011).
DOI: 10.1007/s00170-011-3197-6
Google Scholar
[22]
Gao KZ, Pan Q. K, Li JQ etc al, A hybrid harmony search algorithm for the no-wait flow shop scheduling problems, Asia-Pacific J of Operational research, 29(2): 1250012 (23pages). (2012).
DOI: 10.1142/s0217595912500121
Google Scholar
[23]
Yadav P, Kumar R, Panda SK, Chang CS, An improved harmony search algorithm for optimal scheduling of the diesel generators in oil rig platforms. Energ Convers Manage, 52(2): 893-902. (2011).
DOI: 10.1016/j.enconman.2010.08.016
Google Scholar
[24]
Geoffrey Vilcot, Jean-Charles Billaut. A tabu search algorithm for solving a multi-criteria flexible job shop scheduling problem. International Journal of Production Research, vol. 49, no. 23, 6963-6980. (2011).
DOI: 10.1080/00207543.2010.526016
Google Scholar
[25]
Dauzère-Pérès S, Paulli J. An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search. Annals of Operations Research 1997; 70(3): 281–306. (1997).
DOI: 10.1023/a:1018930406487
Google Scholar
[26]
EbruDemirkol, Sanjay Mehta, RejaUzsoy. Benchmarks for shop scheduling problems. European Journal of Operational Research, vol. 109, no. 1, 137-141. (1998).
DOI: 10.1016/s0377-2217(97)00019-2
Google Scholar
[27]
M. Gholami, M. Zandieh. Intergrating simulation and genetic algorithm to schedule a dynamic flexible job shop. J of IntellManuf, 20: 481-498. (2009).
DOI: 10.1007/s10845-008-0150-0
Google Scholar