[1]
Zhang Song, Ai Xing. Nonlinear Contact Analysis of HSK Spindle/Toolholder Interface[J]. China Mechanical Engineering, 2004, 15(5): 391-394.
Google Scholar
[2]
Ai Xing. High Speed Machining Technology[M]. National Defense Industry Press, 2003. 2-3.
Google Scholar
[3]
Eugene I, Rivin. Tooling Structure: Interface between Cutting Edge and Machine Tool. Annals of the CIRP, 2000, Vol. 49(2): 591-634.
DOI: 10.1016/s0007-8506(07)63457-x
Google Scholar
[4]
T Aoyama, I Inasaki. Performances of HSK tool interface under high rotation speed. Annals of the CIRP, 2001, Vol. 50(1): 281-284.
DOI: 10.1016/s0007-8506(07)62122-2
Google Scholar
[5]
Nakkiew W, Lin CW, Tu JF. A new method to quantify radial error of a motorized end-milling cutter/spindle system at very high speed rotations. International Journal of Machine Tools & Manufacture, 2006, Vol. 46(7-8): 877-889.
DOI: 10.1016/j.ijmachtools.2005.04.021
Google Scholar
[6]
Wang Dianlong, Li Tianhua, Kang Dechun. Finite Element Analysis for Deformation of Toolholder/spindle Interface System at High Rotation Speed[J]. Tool Engineering, 2003, Vol. 37(3): 7-10.
DOI: 10.4028/www.scientific.net/msf.471-472.649
Google Scholar
[7]
Zhang Song, Ai Xing. Finite Element Analysis of HSK Spindle/Toolholder Interface[J]. Mechanical Science and Technology for Aerospace Engineering, 2004, 23(6): 631-633.
Google Scholar
[8]
Zhang Song, Ai Xing, Zhao Jun. Fem-Based Parametric Optimum Design of Spindle/Toolholder Interfaces Under High Rotational Speed[J]. Chinese Journal of Mechanical Engineering, 2004, 40(2): 83-86.
DOI: 10.3901/jme.2004.02.083
Google Scholar
[9]
Ihab M. Hanna, John S. Agapiou, David A. Stephenson. Modeling the HSK Toolholder-Spindle Interface. Journal of manufacturing science and engineering, 2002, Vol. 124: 734-744.
DOI: 10.1115/1.1480023
Google Scholar