Simple and Rapid Synthesis of LiFePO4/C Composite for Lithium Rechargeable Batteries by Microwave-Solvothermal Method Assisted with Short Time Post-Treatment Process

Article Preview

Abstract:

A simple and rapid technique to synthesize LiFePO4 by microwave-solvothermal method assisted a short time post-treatment was described. The crystal structure and the charge-discharge performance of the prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvanostatic charge-discharge testing. The results indicated that this rapid synthesis technique by microwave-solvothermal method combined short time post-treatment was an effective way to obtain LiFePO4 with a single olivine-type crystal structure and small particle size. The electrochemical research indicated that the resulting LiFePO4/C composite could deliver 141.7mAh•g-1 at 0.1C at 25 °C and showed good stability retaining 97% after 45 cycles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

736-740

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.

Google Scholar

[2] A. Ritchie, W. Howard, J. Power Sources. 162 (2006) 809.

Google Scholar

[3] Y. Wang, G. Cao, Adv. Mater. 20 (2008) 2251.

Google Scholar

[4] P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics. 148 (2002) 45.

Google Scholar

[5] M. S. Whittingham, Chem. Rev. 104 (2004) 4271.

Google Scholar

[6] N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Sources 97-98 (2001) 503.

DOI: 10.1016/s0378-7753(01)00727-3

Google Scholar

[7] S. L. Bewlay, K. Konstantinov, G. X. Wang, S. X. Dou, H. K. Liu, Mater. Lett. 58 (2004) 1788.

Google Scholar

[8] N. Ravet, M. Gauthier, K. Zaghib, Goodenough, A. Mauger, F. Gendron, Julien, Chem. Mater. 19 (2007) 2595.

DOI: 10.1021/cm070485r

Google Scholar

[9] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. M. Goupil, S. Pejovnik, J. Jamnik, J. Power Sources 153 (2006) 274.

DOI: 10.1016/j.jpowsour.2005.05.033

Google Scholar

[10] J. Xu, G. Chen, X. Li, Mater. Chem. Phys. 118 (2009) 9.

Google Scholar

[11] S. Yang, Y. Song, P.Y. Zavalij, M.S. Whittingham, Electrochem. Commun. 4(2002) 239.

Google Scholar

[12] M. Kato, K. Sakakibara, Y. Koike, Jpn. J. Appl. Phys. 28 (2000) 5867.

Google Scholar

[13] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, H.G. Kim, Electrochem. Commun. 5 (2003) 839.

Google Scholar

[14] J. Popovic, R. Demir-Cakan, J. Tornow, M. Morcrette, D. S. Su, R. Schlögl, M. Antonietti, M. M. Titirici, Small 7 (2011) 1127.

DOI: 10.1002/smll.201002000

Google Scholar

[15] Yourong Wang, Yifu Yang, Yanbo Yang, Huixia Shao. Solid State Communications 150 (2010) 81–85.

Google Scholar

[16] Fei Teng, Sunand Santhanagopalan, Anjana Asthana, Xiaobao Geng, Sun-il Mho, Reza Shahbazian-Yassa, Dennis Desheng Meng, Journal of Crystal Growth 312 (2010) 3493–3502.

DOI: 10.1016/j.jcrysgro.2010.09.005

Google Scholar

[17] Dinesh Rangappa, Koji Sone, Tetsuichi Kudo, Itaru Honma. Journal of Power Sources 195 (2010) 6167–6171.

DOI: 10.1016/j.jpowsour.2009.11.095

Google Scholar

[18] A. S. Anderson, J. S. Thomas, J. Power Sources 97/98 (2001) 498.

Google Scholar