Research of the Interference of Surface Plasmon in an Enhanced Two-Slit Structure

Article Preview

Abstract:

A modified two-slit structure is provided to investigate surface plasmon (SP) interference. It’s based on a novel structure, implemented by adding a metal film on the input port of the T-shape slit. The affection of metal film for SP interference is investigated by simulation. Results show that the interference phenomenon can be more obvious with the metal film II than without it. With our structure, the added metal film can enhance transmission energy of SPs and improve interference effect. The results will give a theoretical guidance for development of nano-scale photonics devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-82

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ritchie R H. , Plasma losses by fast electrons in thin films, Phys Rev, 106 (1957) 874.

DOI: 10.1103/physrev.106.874

Google Scholar

[2] S.A. Maier, Plasmonics: Fundamentals and Applications, Springer Press, Berlin, (2007).

Google Scholar

[3] Rukhlenko Ivan D, Pannipitiya Asanka, Premaratne Malin, Dispersion relation for surface plasmon polaritons in metal/nonlinear-dielectric/metal slot waveguides, Optics Letters, 36(17) (2011) 3374-3376.

DOI: 10.1364/ol.36.003374

Google Scholar

[4] Nir Rotenberg, Jan N. Caspers, and Henry M. van Driel, Tunable ultrafast control of plasmonic coupling to gold films, Physical Review B, 80 (2009) 245420.

DOI: 10.1103/physrevb.80.245420

Google Scholar

[5] F. Zhou, Y. Liu, Z. Y. Li and Y. N. Xia, Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials, Opt. Exp. 18(13) (2010) 13337-13344.

DOI: 10.1364/oe.18.013337

Google Scholar

[6] X. L. Zhu, Y. Ma, J. S. Zhang et. al, Confined Three-Dimensional Plasmon Modes inside a Ring-Shaped Nanocavity on a Silver Film Imaged by Cathodoluminescence Microscopy, Physical Review Letters , 105 (2010) 127402.

DOI: 10.1103/physrevlett.105.127402

Google Scholar

[7] M. A. Noginov1, G. Zhu1, A. M. Belgrave1, R. Bakker, et al, Demonstration of a spaser-based nanolaser, nature, 460 (2009) 08318.

Google Scholar

[8] A. E. Çetin, Cihan Yilmaz, Ahmet Ali Yanik et. al, Plasmonic Monopole Antenna Arrays for Biosensing, Spectroscopy and nm-Precision Optical Trapping , CLEO2011, CWL4.

DOI: 10.1364/cleo_si.2011.cwl4

Google Scholar

[9] Xiaofei Wu, Jiasen Zhang et al., Refractive index sensor based on surface-plasmon interference, Optics Letters, 34(3) (2009) 392-394.

Google Scholar

[10] J.J. Chen, Z. Li, S. Yue, J.H. Xiao and Q.H. Gong, Plasmon-induced transparency in asymmetric T-shape single slit, Nano Letters. 12 (2012) 300659.

DOI: 10.1021/nl300659v

Google Scholar

[11] Artar A., Yanik A. A., Altug H, Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms. Nano Lett. 11 (2011) 1685−1689.

DOI: 10.1021/nl200197j

Google Scholar

[12] Zhang J., Bai W., Cai L., Xu Y., Song G., Gan Q., Observation of ultra-narrow band plasmon induced transparency basedon large-area hybrid plasmon-waveguide systems. Appl. Phys. Lett. 99 (2011) 181120.

DOI: 10.1063/1.3659309

Google Scholar

[13] Bozhevolnyi S. I., Evlyukhin A. B., Pors A., Nielsen M. G., Willatzen M., Albrektsen O., Optical transparency by detuned electrical dipoles. New J. Phys. 13 (2011) 023034.

DOI: 10.1088/1367-2630/13/2/023034

Google Scholar